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Practical matters

The second part of the course will be somewhat different:
• The focus will shift more towards Computational Linguistics topics /

applications
• We will review more specialized data structures and algorithms (e.g.,

automata, parsing)
• Some overlap with parsing class (but with more emphasis on practical sides)
• Less focus on programming
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An overview of the upcoming topics

• Background on formal languages and automata (today)
• Finite state automata and regular languages
• Finite state transducers (FST)

– FSTs and computational morphology
• Dependency grammars and dependency parsing
• Context-free grammars and constituency parsing
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Assignments

• Assignment policy is similar to the first part of the course
• Three more assignments:

– Finite state automata
– Finite state transducers
– Parsing

• There will also be some in-class exercises – they are part of the course work,
they are not ‘optional’
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This lecture
An overview

• Background: some definitions on phrase structure grammars and rewrite
rules

• Chomsky hierarchy of (formal) language classes
• Background: computational complexity
• Automata, their relation to formal languages
• Formal languages and automata in natural language processing
• A brief note on learnability of natural languages
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Why study formal languages

• Formal languages are an important area of the theory of computation
• They originate from linguistics, and they have been used in

formal/computational linguistics
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Definitions
Alphabet

• An alphabet is a set of symbols
• We generally denote an alphabet using the symbol Σ
• In our examples, we will use lowercase ASCII letters for the individual

symbols, e.g., Σ = {a,b, c}

• Alphabet does not match the every-day use:
– In some cases one may want to use a binary alphabet, Σ = {0, 1}
– If we want to define a grammar for arithmetic operations, we may want to have

Σ = {0, 1, 2, 3, . . . , 9,+,−,×, /}
– If we are interested in natural language syntax our alphabet is the set of natural

language words, Σ = {the,on, cat,dog,mat, sat, . . .}
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Definitions
Strings

• A string over an alphabet is a finite sequence symbols from the alphabet
– a, ab, acbcaa are example strings over Σ = {a,b, c}

• The empty string is denoted by ϵ

• The Σ∗ denotes all strings that can be formed using alphabet Σ, including the
empty string ϵ

• The Σ+ is a shorthand for Σ∗ − ϵ

• Similarly a∗ means the symbol a repeated zero or more times, a+ means a
repeated one or more times

• We use an for exactly n repetitions of a
• The length of a string u is denoted by |u|, e.g., |abc| = 3, or if u = aabbcc,
|u| = 6

• Concatenation of two string u and v is denoted by uv, e.g., for u = ab and
v = ca, uv = abca
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Definitions
Language

• A (formal) language is a set of string over an alphabet
– The set of strings of length 2 over {0, 1}:

{00, 01, 10, 11}
– The set of strings with even number of 1’s over {0, 1}:

{ϵ, 101, 0, 11, 111110, . . .}
– The set of string that retain alphabetical ordering over {a,b, c}:

{a,ab,abc,ac,abcc, . . .}
– The set of strings of words that form grammatically correct English sentences

• Strings that are member of a language is called sentences (or sometimes words)
of the language
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Definitions
Grammar

• A grammar is a finite description of a language
• A common way of specifying a grammar is based on a set

of rewrite rules (or phrase structure rules)
• We represent non-terminal symbols with uppercase letters
• We represent terminal symbols with lowercase letters
• S is the start symbol
• If a string can be generated from S using the rewrite

rules, the string is a valid sentence in the language

S → AB

S → SAB

A → a

B → b

Q: What does this
grammar define?
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Definitions
Phrase structure grammars: more formally

A phrase structure grammar is a tuple G = (Σ,N,S,R) where
Σ is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol ∈ N

R is a set of rules of the form
α → β

where α and β are strings from Σ ∪N

A string u is in the language defined by G,
if it can be derived from S.
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Definitions
Grammars and derivations

Grammar

S → AB

S → SAB

A → a

B → b

Derivation of abab

S ⇒ SAB

SAB ⇒ ABAB

ABAB ⇒ aBAB

aBAB ⇒ abAB

abAB ⇒ abaB

abaB ⇒ abab

• Intermediate strings of terminals and non-terminals
are called sentential forms

• S
∗⇒ abab: the string is in the language

Q: What if string was not in the language?
Q: Is there another derivation sequence?
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Chomsky hierarchy of (formal) languages

• Defined for formalizing natural
language syntax

• Definitions are in terms of the
restrictions on production rules of
the grammar

• Also part of theory of computation
• Each language class corresponds to

a class of (abstract) machines
• Other well-studied classes exist

Regular

Context Free

Context Sensitive

Recursively Enumerable
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Regular grammars

Left regular

1. A → a

2. A → Ba

3. A → ϵ

Right regular

1. A → a

2. A → aB

3. A → ϵ

• Least expressive, but easy to process
• Used in many NLP applications
• Defines the set of languages expressed by regular expressions
• Regular grammars define only regular languages (but reverse is not true)
• We will discuss it in more detail soon
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Regular grammars
an example

Write a right- and a left-regular grammar
ab∗c

left

S → Ac

A → Ab

A → a

right

S → aA

A → bA

A → c

Can you define a regular grammar for
• anbn?
• a5b5?

Derive the string abbbc using one of
your grammars

left

S ⇒ Ac ⇒ Abc ⇒ Abbc ⇒ Abbbc ⇒
abbbc

right

S ⇒ aA ⇒ abA ⇒ abbA ⇒
abbbA ⇒ abbbc

These grammars are weakly equivalent: they generate the same language, but derivations differ

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 14 / 34
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Context-free grammars (CFG)

CFG rules

A → α

where A is a single non-terminal α is a possibly empty sequence of terminals
and non-terminals

• More expressive than regular languages
• Syntax of programming languages are based on CFGs
• Many applications for natural languages too (more on this later)
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Context-free grammars
an example

The example grammar:
Example CFG

S → NP VP VP → V NP
NP → John | Mary V → saw

Exercise: derive ‘John saw Mary’

Derivation
S ⇒NP VP ⇒John VP⇒John V NP ⇒John saw NP⇒John saw Mary
or, S ∗⇒John saw Mary

S

NP

John

VP

V

saw

NP

Mary
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Contxt-free languages
more exercises / questions

• Define a (non-regular) CFG for language ab∗c

• Can you define a CFG for anbn?
• Can you define a CFG for anbncn?
• Can you define a CFG for anbmcndm?
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Context-sensitive grammars

Context-sensitive rules

αAβ → αγβ

where A is a non-terminal symbol, α and β are possibly empty strings of ter-
minals and non-terminals, and γ is a non-empty string of terminal and non-
terminal symbols.

• There is also an alternative definition through non-contracting grammars
• A rule of the form S → ϵ is allowed
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Context-sensitive grammars
an example

• Can you define a context-sensitive grammar for anbncn?
• Can you define a context-sensitive grammar for anbmcndm?
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Unrestricted grammars

• The most expressive class of languages in the Chomsky hierarchy is recursively
enumerable (RE) languages

• RE languages are those for which there is an algorithm to enumerate all
sentences

• RE languages are generated by unrestricted grammars
• Unrestricted grammars do not limit the rewrite rules in any way (except LHS

cannot be empty)
• Mostly theoretical interest, not much practical use
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A(nother) review of computational complexity
Big-O notation

Big-O notation is used for describing worst-case order of complexity of algorithms

O(1) constant
O(logn) logarithmic

O(n) linear
O(n logn) log linear

O(n2) quadratic
O(n3) cubic
O(2n) exponential
O(n!) factorial

Given T(n), what is O(n)?

• T(n) = log(5n)

• T(n) = 5n

• T(n) = n+ logn

• T(n) = n2 + 10

• T(n) = n5 + n4

• T(n) = n5 + 4n

• T(n) = n! + 2n
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O(n logn) log linear

O(n2) quadratic
O(n3) cubic
O(2n) exponential
O(n!) factorial

Given T(n), what is O(n)?
• T(n) = log(5n)

• T(n) = 5n

• T(n) = n+ logn

• T(n) = n2 + 10

• T(n) = n5 + n4

• T(n) = n5 + 4n

• T(n) = n! + 2n
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Big-O notation and order of complexity
the picture
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Big-O notation and order of complexity
the picture (with log y-axis)
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A(nother) review of computational complexity
P, NP, NP-complete and all that

• A major division of complexity classes according to Big-O notation is between
P polynomial time algorithms

NP non-deterministic polynomial time algorithms
• A big question in computing is whether P = NP
• All problems in NP can be reduced in polynomial time to a problem in a

subclass of NP, (NP-complete)
– Solving an NP complete problem in P would mean proving

P = NP
Video from https://www.youtube.com/watch?v=YX40hbAHx3s
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Grammars and automata

Language Grammar Automata
Regular Regular Finite-state
Context-free Context-free Push-down
Context-sensitive Context-sensitive Linear-bounded
Recursively-enumerable Unrestricted Turing machines
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RE languages and Turing machines

• Recursively enumerable languages can be generated by Turing machines
• Turing machine is a simple model of computation that can compute any

computable function
10 10 00 01 11 11 11 11 1. . . . . .

• A Turing machine can enumerate all string defined by an unrestricted phrase
structure grammar

• The membership problem of RE languages is not decidable
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Context-sensitive languages and LBA

• Context-sensitive languages can be generated using a restricted form of
Turing machine, called linear-bounded automata

• Although decidable, recognition of a string with a context-sensitive grammar
is computationally intractable (PSPACE-complete)
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Context-free languages and pushdown automata

• Context-free languages are recognized by pushdown automata
• Pushdown automata consist of a finite-state control mechanism and a stack
• Computationally feasible solutions exists for many problems related to

context-free grammars
• There are polynomial time algorithms for recognizing strings of context-free

languages (we will return to these in lectures on parsing)
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Regular languages and FSA

• Regular languages can be recognized using finite-state automata (FSA)
• A FSA consist of a finite set of states with directed edges between them
• Edges are labeled with the terminal symbols, and tell the automaton to which

state to move on a given input symbol

0start 1 2a

b

c
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Chomsky hierarchy and natural language syntax
Where do natural languages fit?

• The class of grammars adequate for formally describing (the syntax of)
natural languages has been an important question for (computational)
linguistics

• For the most part, context-free grammars are adequate, but there are some
examples, e.g., from Swiss German (Shieber 1985)
Jan säit das…

…mer em Hans es huus hälfed aastriiche
…we Hans (dat) the house (acc) helped paint

Note that this resembles anbmcndm.
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Where do natural languages fit?
the picture

• Often a superset of CF languages,
mildly context-sensitive languages are
considered adequate

• Note, though, we do not even need
the full expressivity of regular
languages

• Modern/computational theories of
grammars range from mildly CS
(TAG, CCG) to Turing complete
(HPSG, LFG?)

Regular

Context Free

Context Sensitive

Recursively Enumerable
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Learnability natural languages
language acquisition & nature vs. nurture

• A central question in linguistics have been about ‘learnability’ of the
languages

• Some linguists claim that natural languages are not learnable, hence, humans
born with a innate language acquisition device

• A poplar theory of the language acquisition device is called principles and
parameters

• This has created a long-lasting debate, which is also related to even
longer-lasting debate on nature vs. nurture
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Formal languages and learnability

• Some of the arguments in the learnability debate has been based on results on
formal languages

• It is shown (Gold 1967) that none of the languages in the Chomsky hierarchy
are learnable from positive input

• The applicability of such results to human language acquisition is
questionable

• Computational modeling/experiments may help here (another job for
computational linguists)
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Wrapping up

• Formal languages has a central role in the theory of computation, as well as in
formal/computational linguistics

• Practically-useful classes of languages in Chomsky hierarchy are regular and
context-free languages (we will return to these in more detail)

• Regular languages and FSA have many applications in NLP, e.g.,
morphological analysis

• Natural language syntax can be described ‘mostly’ by CFGs

Next:
• Finite state automata
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References

References / additional reading material

• The classic reference for theory of computation is Hopcroft and Ullman
(1979) (and its successive editions)

• Sipser (2006) is another good textbook on the topic
• A popular nativist account of language acquisition debate is Pinker (1994)
• A popular non-nativist (somewhat empiricist) book on language acquisition

is Clark and Lappin (2011), which also covers discussion of (Gold 1967) and
later work
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