# Data Structures and Algorithms III Formal languages and automata

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2019–2020

### Practical matters

The second part of the course will be somewhat different:

- The focus will shift more towards Computational Linguistics topics / applications
- We will review more specialized data structures and algorithms (e.g., automata, parsing)
- Some overlap with parsing class (but with more emphasis on practical sides)
- Less focus on programming

# An overview of the upcoming topics

- Background on formal languages and automata (today)
- Finite state automata and regular languages
- Finite state transducers (FST)
  - FSTs and computational morphology
- Dependency grammars and dependency parsing
- Context-free grammars and constituency parsing

# Assignments

- Assignment policy is similar to the first part of the course
- Three more assignments:
  - Finite state automata
  - Finite state transducers
  - Parsing
- There will also be some in-class exercises they are part of the course work, they are not 'optional'

### This lecture

#### An overview

- Background: some definitions on phrase structure grammars and rewrite rules
- Chomsky hierarchy of (formal) language classes
- Background: computational complexity
- Automata, their relation to formal languages
- Formal languages and automata in natural language processing
- A brief note on learnability of natural languages

# Why study formal languages

- Formal languages are an important area of the theory of computation
- They originate from linguistics, and they have been used in formal/computational linguistics

### Alphabet

- An *alphabet* is a set of symbols
- We generally denote an alphabet using the symbol  $\Sigma$
- In our examples, we will use lowercase ASCII letters for the individual symbols, e.g.,  $\Sigma = \{a,b,c\}$
- Alphabet does not match the every-day use:
  - In some cases one may want to use a binary alphabet,  $\Sigma = \{0, 1\}$
  - If we want to define a grammar for arithmetic operations, we may want to have  $\Sigma = \{0, 1, 2, 3, \dots, 9, +, -, \times, /\}$
  - If we are interested in natural language syntax our alphabet is the set of natural language words,  $\Sigma = \{\text{the}, \text{on}, \text{cat}, \text{dog}, \text{mat}, \text{sat}, \ldots\}$

### Strings

- A *string* over an alphabet is a finite sequence symbols from the alphabet a, ab, acbcaa are example strings over  $\Sigma = \{a, b, c\}$
- The *empty string* is denoted by  $\epsilon$
- The  $\Sigma^*$  denotes all strings that can be formed using alphabet  $\Sigma$ , including the empty string  $\epsilon$
- The  $\Sigma^+$  is a shorthand for  $\Sigma^* \epsilon$
- Similarly  $\alpha^*$  means the symbol  $\alpha$  repeated zero or more times,  $\alpha+$  means  $\alpha$  repeated one or more times
- We use a<sup>n</sup> for exactly n repetitions of a
- The length of a string u is denoted by |u|, e.g., |abc|=3, or if u=aabbcc, |u|=6
- Concatenation of two string u and v is denoted by uv, e.g., for u = ab and v = ca, uv = abca

### Language

- A (formal) language is a set of string over an alphabet
  - The set of strings of length 2 over {0, 1}: {00, 01, 10, 11}
  - The set of strings with even number of 1's over  $\{0, 1\}$ :  $\{\epsilon, 101, 0, 11, 111110, \ldots\}$
  - The set of string that retain alphabetical ordering over  $\{a, b, c\}$ :  $\{a, ab, abc, ac, abcc, ...\}$
  - The set of strings of words that form grammatically correct English sentences
- Strings that are member of a language is called *sentences* (or sometimes *words*) of the language

#### Grammar

- A grammar is a finite description of a language
- A common way of specifying a grammar is based on a set of *rewrite rules* (or *phrase structure rules*)
- We represent *non-terminal symbols* with uppercase letters
- We represent *terminal symbols* with lowercase letters
- S is the *start symbol*
- If a string can be generated from S using the rewrite rules, the string is a valid sentence in the language

```
\begin{array}{ccc} S \rightarrow & A \ B \\ S \rightarrow & S \ A \ B \\ A \rightarrow & \alpha \\ B \rightarrow & b \end{array}
```

#### Grammar

- A grammar is a finite description of a language
- A common way of specifying a grammar is based on a set of *rewrite rules* (or *phrase structure rules*)
- We represent *non-terminal symbols* with uppercase letters
- We represent *terminal symbols* with lowercase letters
- S is the *start symbol*
- If a string can be generated from S using the rewrite rules, the string is a valid sentence in the language

| $S \to$   | ΑВ  |
|-----------|-----|
| $S  \to $ | SAB |
| $A \to$   | α   |
| $B  \to $ | b   |

Q: What does this grammar define?

#### Phrase structure grammars: more formally

A phrase structure grammar is a tuple  $G = (\Sigma, N, S, R)$  where

 $\Sigma$  is an alphabet of terminal symbols

N are a set of non-terminal symbols

S is a special 'start' symbol  $\in N$ 

R is a set of rules of the form

$$\alpha \rightarrow \beta$$

where  $\alpha$  and  $\beta$  are strings from  $\Sigma \cup N$ 

A string u is in the language defined by G, if it can be derived from S.

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| S 	o                    | SAB |  |
| $A \rightarrow$         | α   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

#### Grammars and derivations

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| S 	o                    | SAB |  |
| $A \rightarrow$         | a   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

### Derivation of abab

$$S \Rightarrow SAB$$

#### Grammars and derivations

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | АВ  |  |
| S 	o                    | SAB |  |
| $A \to$                 | а   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

### Derivation of abab

$$S \Rightarrow SAB$$
$$SAB \Rightarrow ABAB$$

#### Grammars and derivations

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| S 	o                    | SAB |  |
| $A \rightarrow$         | а   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
| l                       |     |  |

### Derivation of abab

$$S \Rightarrow SAB$$
  
 $SAB \Rightarrow ABAB$   
 $ABAB \Rightarrow \alpha BAB$ 

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| $S \rightarrow$         | SAB |  |
| $A \rightarrow$         | α   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

Derivation of abab
$$S \Rightarrow SAB \qquad aBAB \Rightarrow abAB$$

$$SAB \Rightarrow ABAB$$

$$ABAB \Rightarrow aBAB$$

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| S 	o                    | SAB |  |
| $A \rightarrow$         | a   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

Derivation of abab
$$S \Rightarrow SAB \qquad aBAB \Rightarrow abAB$$

$$SAB \Rightarrow ABAB \qquad abAB \Rightarrow abaB$$

$$ABAB \Rightarrow aBAB$$

| Grammar                 |     |  |
|-------------------------|-----|--|
|                         |     |  |
| $S \to$                 | ΑВ  |  |
| $S \rightarrow$         | SAB |  |
| $A \rightarrow$         | а   |  |
| $\mathrm{B}  ightarrow$ | b   |  |
|                         |     |  |

| Derivation of abab            |                         |
|-------------------------------|-------------------------|
| $S \Rightarrow SAB$           | $aBAB \Rightarrow abAB$ |
| $SAB \Rightarrow ABAB$        | $abAB\Rightarrow abaB$  |
| $ABAB \Rightarrow \alpha BAB$ | $abaB\Rightarrow abab$  |

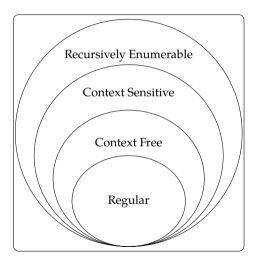
| Grammar                  |     |
|--------------------------|-----|
|                          |     |
| $S \to$                  | АВ  |
| $S \to$                  | SAB |
| $A\to$                   | а   |
| $\mathrm{B} \rightarrow$ | b   |
|                          |     |

| Derivation of abab            |                         |
|-------------------------------|-------------------------|
| $S \Rightarrow SAB$           | $aBAB \Rightarrow abAB$ |
| $SAB \Rightarrow ABAB$        | $abAB\Rightarrow abaB$  |
| $ABAB \Rightarrow \alpha BAB$ | $abaB\Rightarrow abab$  |

- Intermediate strings of terminals and non-terminals are called *sentential forms*
- $S \stackrel{*}{\Rightarrow} abab$ : the string is in the language
- Q: What if string was not in the language?
- O: Is there another derivation sequence?

# Chomsky hierarchy of (formal) languages

- Defined for formalizing natural language syntax
- Definitions are in terms of the restrictions on production rules of the grammar
- Also part of theory of computation
- Each language class corresponds to a class of (abstract) machines
- Other well-studied classes exist



### Left regular

- 1.  $A \rightarrow a$
- 2.  $A \rightarrow Ba$
- 3.  $A \rightarrow \epsilon$

### Right regular

- 1.  $A \rightarrow a$
- $2. \ A \rightarrow \alpha B$
- 3.  $A \rightarrow \epsilon$

- Least expressive, but easy to process
- Used in many NLP applications
- Defines the set of languages expressed by regular expressions
- Regular grammars define only regular languages (but reverse is not true)
- We will discuss it in more detail soon

an example

Write a right- and a left-regular grammar  $ab^*c$ 

an example

Write a right- and a left-regular grammar ab\*c

| left               |
|--------------------|
| $S \to Ac$         |
| $A \rightarrow Ab$ |
| A 	o a             |

| right            |  |
|------------------|--|
| $S \to \alpha A$ |  |
| $A \to b A$      |  |
| $A \to c$        |  |

an example

Write a right- and a left-regular grammar ab\*c

| left               |   |
|--------------------|---|
| $S \to Ac$         |   |
| $A \rightarrow Ab$ |   |
| A 	o a             |   |
|                    | _ |

| right              |  |
|--------------------|--|
| $S \to \alpha A$   |  |
| $A \rightarrow bA$ |  |
| A 	o c             |  |

Can you define a regular grammar for

- $a^nb^n$ ?
- $a^5b^5$ ?

an example

Write a right- and a left-regular grammar ab\*c

| left       |  |
|------------|--|
| $S \to Ac$ |  |
| $A\toAb$   |  |
| A 	o a     |  |

| right            |  |
|------------------|--|
| $S \to \alpha A$ |  |
| $A \to bA$       |  |
| $A \to c$        |  |

Derive the string abbbc using one of your grammars

Can you define a regular grammar for

- $a^nb^n$ ?
- $a^5b^5$ ?

an example

Write a right- and a left-regular grammar ab\*c

| left               |  |
|--------------------|--|
| $S \to Ac$         |  |
| $A \rightarrow Ab$ |  |
| A 	o a             |  |

| right              |  |
|--------------------|--|
| $S \to \alpha A$   |  |
| $A \rightarrow bA$ |  |
| $A \rightarrow c$  |  |

Can you define a regular grammar for

- $a^nb^n$ ?
- $a^5b^5$ ?

Derive the string abbbc using one of your grammars

$$\begin{array}{c} \mathsf{left} \\ \mathsf{S} \Rightarrow \mathsf{Ac} \Rightarrow \mathsf{Abc} \Rightarrow \mathsf{Abbc} \Rightarrow \mathsf{Abbbc} \Rightarrow \\ \mathsf{abbbc} \end{array}$$

an example

Write a right- and a left-regular grammar ab\*c

| left               |  |
|--------------------|--|
| $S \to Ac$         |  |
| $A \rightarrow Ab$ |  |
| A 	o a             |  |

| right                    |
|--------------------------|
| $S \rightarrow \alpha A$ |
| $A \rightarrow bA$       |
| $A \rightarrow c$        |

Can you define a regular grammar for

- $a^nb^n$ ?
- $a^5b^5$ ?

 $S \rightarrow Ac$   $S \rightarrow aA$   $S \Rightarrow Ac \Rightarrow Abc \Rightarrow Abbc \Rightarrow Abbbc =$ 

left
$$S \Rightarrow Ac \Rightarrow Abc \Rightarrow Abbc \Rightarrow Abbbc \Rightarrow$$

$$abbbc$$

Derive the string abbbc using one of

your grammars

These grammars are weakly equivalent: they generate the same language, but derivations differ

# Context-free grammars (CFG)

#### CFG rules

$$A \rightarrow \alpha$$

where A is a *single* non-terminal  $\alpha$  is a possibly empty sequence of terminals and non-terminals

- More expressive than regular languages
- Syntax of programming languages are based on CFGs
- Many applications for natural languages too (more on this later)

# Context-free grammars

an example

The example grammar:

```
Example CFG
       \rightarrow NP VP
                                VP
                                            VNP
 NP \rightarrow John \mid Mary
                                            saw
```

Exercise: derive 'John saw Mary'

# Context-free grammars

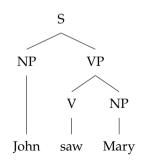
#### an example

The example grammar:

#### Example CFG NP VP VPV NP $\rightarrow$ John | Mary saw

Exercise: derive 'John saw Mary'

# Derivation $S \Rightarrow NP VP \Rightarrow John VP$ $\Rightarrow$ John V NP $\Rightarrow$ John saw NP ⇒John saw Mary or, $S \stackrel{*}{\Rightarrow} John saw Mary$



more exercises / questions

• Define a (non-regular) CFG for language ab\*c

more exercises / questions

- Define a (non-regular) CFG for language ab\*c
- Can you define a CFG for a<sup>n</sup>b<sup>n</sup>?

more exercises / questions

- Define a (non-regular) CFG for language ab\*c
- Can you define a CFG for a<sup>n</sup>b<sup>n</sup>?
- Can you define a CFG for  $a^nb^nc^n$ ?

more exercises / questions

- Define a (non-regular) CFG for language ab\*c
- Can you define a CFG for a<sup>n</sup>b<sup>n</sup>?
- Can you define a CFG for  $a^nb^nc^n$ ?
- Can you define a CFG for a<sup>n</sup>b<sup>m</sup>c<sup>n</sup>d<sup>m</sup>?

# Context-sensitive grammars

#### Context-sensitive rules

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$

where A is a non-terminal symbol,  $\alpha$  and  $\beta$  are possibly empty strings of terminals and non-terminals, and  $\gamma$  is a non-empty string of terminal and non-terminal symbols.

- There is also an alternative definition through non-contracting grammars
- A rule of the form  $S \to \epsilon$  is allowed

# Context-sensitive grammars an example

- Can you define a context-sensitive grammar for  $a^nb^nc^n$ ?
- Can you define a context-sensitive grammar for  $a^nb^mc^nd^m$ ?

### Unrestricted grammars

- The most expressive class of languages in the Chomsky hierarchy is *recursively enumerable* (RE) languages
- RE languages are those for which there is an algorithm to enumerate all sentences
- RE languages are generated by unrestricted grammars
- Unrestricted grammars do not limit the rewrite rules in any way (except LHS cannot be empty)
- Mostly theoretical interest, not much practical use

Big-O notation

Big-O notation is used for describing worst-case order of complexity of algorithms

```
O(1) constant
```

 $O(\log n)$  logarithmic

O(n) linear

 $O(n \log n)$  log linear

 $O(n^2)$  quadratic

 $O(n^3)$  cubic

O(2<sup>n</sup>) exponential

O(n!) factorial

Big-O notation

#### Big-O notation is used for describing worst-case order of complexity of algorithms

```
O(1) constant
```

O(n) linear

 $O(n \log n)$  log linear

 $O(n^2)$  quadratic

 $O(n^3)$  cubic

O(2<sup>n</sup>) exponential

O(n!) factorial

Given T(n), what is O(n)?

•  $T(n) = \log(5n)$ 

Big-O notation

#### Big-O notation is used for describing worst-case order of complexity of algorithms

```
O(1) constant
```

 $O(\log n)$  logarithmic

O(n) linear

 $O(n \log n)$  log linear

 $O(n^2)$  quadratic

 $O(n^3)$  cubic

 $O(2^n)$  exponential

O(n!) factorial

Given T(n), what is O(n)?

•  $T(n) = \log(5n)$ 

• T(n) = 5n

Big-O notation

#### Big-O notation is used for describing worst-case order of complexity of algorithms

- O(1) constant
- $O(\log n)$  logarithmic
  - O(n) linear
- $O(n \log n)$  log linear
  - $O(n^2)$  quadratic
  - $O(n^3)$  cubic
  - $O(2^n)$  exponential
  - O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$

Big-O notation

Big-O notation is used for describing worst-case order of complexity of algorithms

O(1) constant

 $O(\log n)$  logarithmic

O(n) linear

 $O(n \log n)$  log linear

 $O(n^2)$  quadratic

 $O(n^3)$  cubic

O(2<sup>n</sup>) exponential

O(n!) factorial

Given T(n), what is O(n)?

•  $T(n) = \log(5n)$ 

• T(n) = 5n

•  $T(n) = n + \log n$ 

•  $T(n) = n^2 + 10$ 

Big-O notation

#### Big-O notation is used for describing worst-case order of complexity of algorithms

- O(1) constant
- $O(\log n)$  logarithmic
  - O(n) linear
- $O(n \log n)$  log linear
  - $O(n^2)$  quadratic
  - $O(n^3)$  cubic
  - O(2<sup>n</sup>) exponential
  - O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$
- $T(n) = n^5 + n^4$

Big-O notation

Big-O notation is used for describing worst-case order of complexity of algorithms

- O(1) constant
- $O(\log n)$  logarithmic
  - O(n) linear
- $O(n \log n)$  log linear
  - $O(n^2)$  quadratic
  - $O(n^3)$  cubic
  - $O(2^n)$  exponential
  - O(n!) factorial

- $T(n) = \log(5n)$
- T(n) = 5n
- $T(n) = n + \log n$
- $T(n) = n^2 + 10$
- $T(n) = n^5 + n^4$
- $T(n) = n^5 + 4^n$

Big-O notation

#### Big-O notation is used for describing worst-case order of complexity of algorithms

O(1) constant

 $O(\log n)$  logarithmic

O(n) linear

 $O(n \log n)$  log linear

 $O(n^2)$  quadratic

 $O(n^3)$  cubic

O(2<sup>n</sup>) exponential

O(n!) factorial

• 
$$T(n) = \log(5n)$$

• 
$$T(n) = 5n$$

• 
$$T(n) = n + \log n$$

• 
$$T(n) = n^2 + 10$$

• 
$$T(n) = n^5 + n^4$$

• 
$$T(n) = n^5 + 4^n$$

• 
$$T(n) = n! + 2^n$$

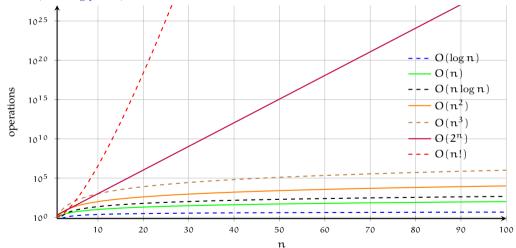
### Big-O notation and order of complexity

#### the picture



### Big-O notation and order of complexity

the picture (with log y-axis)



# A(nother) review of computational complexity P, NP, NP-complete and all that

- A major division of complexity classes according to Big-O notation is between
   P polynomial time algorithms
   NP non-deterministic polynomial time algorithms
- A big question in computing is whether P = NP
- All problems in NP can be reduced in polynomial time to a problem in a subclass of NP, (NP-complete)
  - Solving an NP complete problem in P would mean proving P = NP

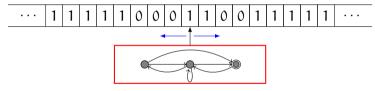
Video from https://www.youtube.com/watch?v=YX40hbAHx3s

#### Grammars and automata

| Language               | Grammar           | Automata        |
|------------------------|-------------------|-----------------|
| Regular                | Regular           | Finite-state    |
| Context-free           | Context-free      | Push-down       |
| Context-sensitive      | Context-sensitive | Linear-bounded  |
| Recursively-enumerable | Unrestricted      | Turing machines |

## RE languages and Turing machines

- Recursively enumerable languages can be generated by *Turing machines*
- Turing machine is a simple model of computation that can compute any computable function



- A Turing machine can enumerate all string defined by an unrestricted phrase structure grammar
- The membership problem of RE languages is not decidable

## Context-sensitive languages and LBA

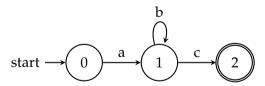
- Context-sensitive languages can be generated using a restricted form of Turing machine, called *linear-bounded automata*
- Although decidable, recognition of a string with a context-sensitive grammar is computationally intractable (PSPACE-complete)

## Context-free languages and pushdown automata

- Context-free languages are recognized by *pushdown automata*
- Pushdown automata consist of a finite-state control mechanism and a stack
- Computationally feasible solutions exists for many problems related to context-free grammars
- There are polynomial time algorithms for recognizing strings of context-free languages (we will return to these in lectures on parsing)

## Regular languages and FSA

- Regular languages can be recognized using finite-state automata (FSA)
- A FSA consist of a finite set of states with directed edges between them
- Edges are labeled with the terminal symbols, and tell the automaton to which state to move on a given input symbol



## Chomsky hierarchy and natural language syntax

Where do natural languages fit?

- The class of grammars adequate for formally describing (the syntax of) natural languages has been an important question for (computational) linguistics
- For the most part, context-free grammars are adequate, but there are some examples, e.g., from Swiss German (Shieber 1985)

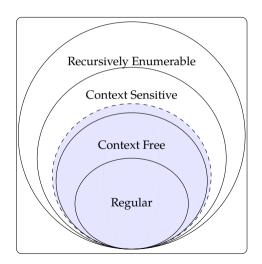
  Jan säit das...



Note that this resembles  $a^nb^mc^nd^m$ .

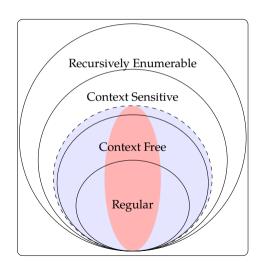
# Where do natural languages fit? the picture

 Often a superset of CF languages, mildly context-sensitive languages are considered adequate



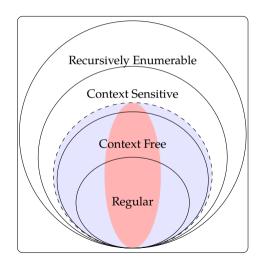
# Where do natural languages fit? the picture

- Often a superset of CF languages, mildly context-sensitive languages are considered adequate
- Note, though, we do not even need the full expressivity of regular languages



# Where do natural languages fit? the picture

- Often a superset of CF languages, mildly context-sensitive languages are considered adequate
- Note, though, we do not even need the full expressivity of regular languages
- Modern/computational theories of grammars range from mildly CS (TAG, CCG) to Turing complete (HPSG, LFG?)



### Learnability natural languages

language acquisition & nature vs. nurture

- A central question in linguistics have been about 'learnability' of the languages
- Some linguists claim that natural languages are not learnable, hence, humans born with a innate *language acquisition device*
- A poplar theory of the *language acquisition device* is called *principles and* parameters
- This has created a long-lasting debate, which is also related to even longer-lasting debate on nature vs. nurture

## Formal languages and learnability

- Some of the arguments in the learnability debate has been based on results on formal languages
- It is shown (Gold 1967) that none of the languages in the Chomsky hierarchy are learnable from positive input
- The applicability of such results to human language acquisition is questionable
- Computational modeling/experiments may help here (another job for computational linguists)

### Wrapping up

- Formal languages has a central role in the theory of computation, as well as in formal/computational linguistics
- Practically-useful classes of languages in Chomsky hierarchy are regular and context-free languages (we will return to these in more detail)
- Regular languages and FSA have many applications in NLP, e.g., morphological analysis
- Natural language syntax can be described 'mostly' by CFGs

## Wrapping up

- Formal languages has a central role in the theory of computation, as well as in formal/computational linguistics
- Practically-useful classes of languages in Chomsky hierarchy are regular and context-free languages (we will return to these in more detail)
- Regular languages and FSA have many applications in NLP, e.g., morphological analysis
- Natural language syntax can be described 'mostly' by CFGs

#### Next:

• Finite state automata

## References / additional reading material

- The classic reference for theory of computation is Hopcroft and Ullman (1979) (and its successive editions)
- Sipser (2006) is another good textbook on the topic
- A popular nativist account of language acquisition debate is Pinker (1994)
- A popular non-nativist (somewhat empiricist) book on language acquisition is Clark and Lappin (2011), which also covers discussion of (Gold 1967) and later work

## References / additional reading material (cont.)

Clark, Alexander and Shalom Lappin (2011). *Linguistic Nativism and the Poverty of the Stimulus*. Oxford: Wiley-Blackwell. ISBN: 978-1-4051-8785-5.

Gold, E. Mark (1967). "Language identification in the limit". In: *Information and Control* 10.5, pp. 447–474. Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*.

Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.

Pinker, Steven (1994). The language instinct: the new science of language and mind. Penguin Books.

Shieber, Stuart M. (1985). "Evidence against the context-freeness of natural language". In: *Linguistics and Philosophy* 8.3, pp. 333–343. DOI: 10.1007/BF00630917.

Sipser, Michael (2006). *Introduction to the Theory of Computation*. second. Thomson Course Technology. ISBN: 0-534-95097-3.