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Directed Graphs

• A directed graph or digraph ! is a set " of vertices
– together with a collection # of pairwise 
connections between vertices from ", called edges
where all the edges in the graph are directed

• An edge e = (', )) is directed from ' to ) if the pair 
(', )) is ordered, with ' preceding )

• The first endpoint of a directed edge is called the 
origin, and the second endpoint is called the 
destination of the edge

- ' is the origin, ) is the destination of edge ,
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Directed Graphs - Terminology

• the outgoing edges of a vertex are the edges whose origin is 
that vertex 

- The outgoing edges of vertex C are 1 and 2
• The incoming edges of a vertex are the edges whose 

destination is that vertex
- The incoming edge of vertex C is 6

• [ug] Two vertices ! and " are adjacent if there is an edge 
whose end vertices are ! and "

• [ug] An edge is called incident to a vertex if the vertex is one of 
the edge’s endpoints

• [ug] The degree of a vertex, deg("), is the number of incident 
edges of "

• The in-degree and out-degree of a vertex " are the number of 
incoming and outgoing edges of ", - indeg("), outdeg(")

- indeg(C) = 1, outdeg(C) = 2
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Directed Graph – Terminology (cont’d)

• A directed path is a path such that all edges are directed 
and are traversed along their direction
- " = (%, 7, (, 4, *, 3, ,) is a directed simple path

• A directed cycle is a cycle such that all edges are 
directed and are traversed along their direction
- . = ,, 8, %, 6, ., 1, , is a directed simple cycle
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Directed Graph – Terminology (cont’d)

• A directed graph is called acyclic if it has 
no directed cycles

- #⃗ is an acyclic graph

• A directed graph is strongly connected if 
for any two vertices $ and % of #⃗, $
reaches % and % reaches $
- & is a strongly connected graph
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Directed Graph Properties

• Property 1. If "⃗ is a directed graph with # edges and vertex set $, then

%
&∈(

indeg(/) = %
&∈(

outdeg / = #

• Justification. In a directed graph each edge (5, /) contributes:

- One unit to the out-degree of its origin 5
- One unit to the in-degree of its destination /
- The total contribution is equal to the number of edges
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Directed Graph Properties (cont’d)

• Property 2. If "⃗ is a simple directed graph with # vertices and $ edges, then

$ ≤ #(# − 1)
• Justification. The graph is simple → it has no parallel edges or self-loops.

- No two edges can have the same origin and destination
- There are no self-loops (edges with the same origin and destination)
- Therefore the maximum degree of a vertex is n-1
- It follows from property 1 that $ ≤ #(# − 1)
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The Graph ADT
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The Graph ADT – for directed graphs

• A graph is a collection of vertices and edges

• Can be modelled as a combination of three data types: Vertex, Edge and Graph

• class Vertex

- Lightweight object storing the information provided by the user
- The element() method provides a way to retrieve the stored information

• class Edge

- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge
- endpoints() method: returns a tuple (", $) such that vertex " is the origin of the edge 

and vertex $ is the destination
- opposite(v) method: assuming vertex $ is one endpoint of an edge (either origin or 

destination), return the other endpoint
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The Graph ADT – for directed graphs (cont’d)

• class Graph: can be either undirected or directed – flag provided to the constuctor
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vertex_count() returns the number of vertices of the graph
vertices() returns an iteration of all the vertices of the graph
edge_count() returns the number of edges of the graph
edges() returns an interation of all the edges of the graph
get_edge(u,v) returns the edge from vertex ! to vertex ", if one exists, otherwise 

None
degree(v, out=True) returns the number of outgoing/incoming edges incident to vertex ", 

as designated by the optional parameter out
incident_edges(v, out=True) returns outgoing edges incident to vertex " by default; report 

incoming edges if out=False
insert_vertex(v, x=None) create and return a new Vertex storing element #
insert_edge(u,v, x=None) create and return a new Edge from vertex ! to vertex ", storing #
remove_vertex(v) remove vertex " and all its incident edges from the graph
remove_edge(e) remove edge $ from the graph



Traversals in a Directed Graph
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Traversals in a Directed Graph

• The DFS and BFS techniques presented in the previous lecture for undirected graphs can 
be used to perform traversals of directed graphs

• The difference is that this time the edges can only be traversed from origin to destination, 
but not in the opposite direction

• As in the undirected graphs case, traversal algorithms can solve interesting problems 
dealing with reachability in a directed graph "⃗:

- Computing a directed path from vertex # to vertex $, or report that no such path exists

- Finding all the vertices of "⃗ that are reachable from a given vertex %
- Determine whether "⃗ is acyclic

- Determine whether "⃗ is strongly connected
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DFS in a Directed Graph
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DFS in a Directed Graph - Example
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• Assume that the outgoing edges of a vertex are considered in 

alphabetical order – e.g. for D: A, F, G

Current vertex: D
Edges to consider: to A, F, G



DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example

Directed Graphs | 25

G

C

E F

D

B

A

visited discovery 
edge

D None
A (D,A)
F (D,F)
C (F,C)
B (C,B)
E (B,E)
G (E,G)

Current vertex: E
Edges to consider: to G



DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS in a Directed Graph - Example
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DFS Traversal – discovery edges
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DFS Tree
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Properties of a DFS in a Digraph

• Proposition. A depth-first search in a directed graph "⃗ starting at a vertex # visits all the 

vertices of "⃗ that are reachable from #. Also, the DFS tree contains directed paths from #
to every vertex reachable from #.

• Justification. Consider $% to be the subset of vertices of "⃗ visited by a DFS starting at #. 
Need to show that $% contains # and every vertex reachable from #.

- Suppose that there is a vertex & reachable from # that is not in $%
- Consider a directed path from # to & and let ((, *) be the first edge on this path that 

goes out of $% → ( ∈ $%, v ∉ $%
- When DFS reaches (, all outgoing edges of ( are explored – thus it must also reach *
→ then * ∈ $% (contradiction)

- Second property – induction: each time a discovery edge ((, *) is identified, since (
was previously discovered, there exists a directed path from # to (; by appending the 
discovery edge to the existing path, a directed path from # to * is obtained
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Graph Class,
part 1
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Graph Class,
part 2

Graphs | 42



Depth-First Search in a Directed Graph – Python Implementation

Directed Graphs | 43



DFS in a Directed Graph – Running Time

• Consider "⃗, a directed graph with # vertices and $ edges. A DFS traversal of "⃗ can be 
performed in %(# + $) time.

- provided the graph is represented using a data structure where the incident edges of 
a vertex (both incoming and outgoing) can be iterated in %(deg , ) time, and finding 
the opposite vertex takes %(1) time

- The DFS procedure will be called at most once for every vertex of the graph
- Each edge will be examined at most once in a directed graph, from its origin vertex
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Problems Solved using a DFS Traversal in a Directed Graph

1. Computing a directed path from vertex ! to vertex ", or report that no such path exists

2. Testing whether $⃗ is strongly connected

3. Computing the set of vertices of $⃗ that are reachable from a given vertex %
4. Computing a directed cycle in $⃗, or reporting that $⃗ is acyclic

5. Computing the transitive closure of $⃗

Directed Graphs | 45



1. Compute a Directed Path from ! to "

• Assume DFS was performed for the digraph

• Exactly the same algorithm as in the undirected case - build the path from end to start 
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2. Testing whether ! is strongly connected 

• That is, if for every pair of vertices " and #, " reaches # and # reaches "
• Idea: start an independent DFS traversal from each vertex of %⃗. If the discovered

dictionary of every of these independent DFS traversals has length & (the number of 
vertices), then %⃗ is strongly connected

• Running time: ?
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2. Testing whether ! is strongly connected 
• That is, if for every pair of vertices " and #, " reaches # and # reaches "
• Idea: start an independent DFS traversal from each vertex of %⃗. If the discovered

dictionary of every of these independent DFS traversals has length & (the number of 
vertices), then %⃗ is strongly connected

• Running time: '(& & + * ), not that great

• Better idea: 

- Start with doing a DFS from an arbitrary vertex ,. 
- If the discovered dictionary does not contain all the vertices – the digraph is not 

strongly connected - stop.

- Otherwise, construct a copy of the graph %⃗, but where the orientation of each edge is 
reversed. Perform a DFS on the reversed graph. If discovered contains all vertices –
the digraph is strongly connected. Otherwise it is not.

- Runs in '(& + *) time 
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3. Computing the Vertices Reachable from a Given Start Vertex !
• Perform a DFS traversal #⃗ starting from $
• The set of vertices reachable from $ are the keys of the discovered dictionary
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4. Compute a Directed Cycle in "⃗, or Report that "⃗ is Acyclic

• The DFS procedure was already performed for the graph "
• A cycle exists if and only if a back edge exists with respect to the DFS traversal of that 

graph

• In a directed graph DFS traversal, there are multiple types of nontree edges: back edges, 
forward edges and cross edges

• When a directed edge is explored, leading to a previously visited vertex, keep track of 
whether that vertex is an ancestor of the current vertex

• To obtain the cycle, take the back edge from the descendant to the ancestor and then 
follow DFS tree edges back to the descendant
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4. Compute a Directed Cycle in "⃗, or Report that "⃗ is Acyclic

Directed Graphs | 51

G

C

E F

D

B

A

D

A F

C

B

E

G
discovery edge
back edge
forward edge
cross edge



5. Computing the Transitive Closure of "⃗
• Particular graph applications benefit from being able to answer reachability questions 

more efficiently 

- e.g. a service that computes driving destinations from point # to point $; a first step is 
to find about if $ can be reached starting from #

• Precompute a more efficient representation for the graph that can answer such queries, 
and then reuse it for all the reachability queries

• A transitive closure of a directed graph "⃗ is itself a directed graph "⃗∗ such that

- the vertices of "⃗∗ are the same vertices of "⃗ and

- "⃗∗ has an edge ((, *) whenever "⃗ has a directed path from ( to *, including the case 
where ((, *) is an edge of the original graph "⃗

Directed Graphs | 52



5. Computing the Transitive Closure of "⃗: Method A

• If "⃗ is a graph with # vertices and $ edges represented as an adjacency list or an 
adjacency map, then 

• Compute the transitive closure by making # sequential DFS traversals of the graph, one 
starting at each vertex

• E.g. the DFS starting at vertex % will determine all vertices reachable from % – the 
transitive closure includes all the edges starting at % to each of the vertices that are 
reachable from %

• Thus computing the transitive closure of a digraph using several DFS traversals can be 
done in ? time
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5. Computing the Transitive Closure of "⃗: Method A

• If "⃗ is a graph with # vertices and $ edges represented as an adjacency list or an 
adjacency map, then 

• Compute the transitive closure by making # sequential DFS traversals of the graph, one 
starting at each vertex

• E.g. the DFS starting at vertex % will determine all vertices reachable from % – the 
transitive closure includes all the edges starting at % to each of the vertices that are 
reachable from %

• Thus computing the transitive closure of a digraph using several DFS traversals can be 
done in &(# # + $ ) time

• Remember, the transitive closure is precomputed once and queried many times
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5. Computing the Transitive Closure of "⃗: Method B

• If "⃗ is a graph with # vertices and $ edges represented 
by a data structure that supports O(1) lookup for 
get_edge(u,v) (e.g. an adjacency matrix), then 

• Compute the transitive closure of "⃗ in a series of rounds

- Initially, "⃗%= "⃗
- Define an arbitrary order over the vertices of "⃗, 
&', &), … , &+

- Compute the rounds, starting with round 1

- At round ,, construct a directed graph "⃗- starting 
with "⃗- = "⃗-/', and adding to "⃗- the directed edge 
(&1, &2) if "⃗-/' contains both edges (&1, &-) and (&-, &2).

• This method of computing the transitive closure of a 
digraph is known as the Floyd-Warshall algorithm
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Floyd-Warshall Algorithm - Pseudocode
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Floyd-Warshall Algorithm – Running Time

• If the data structure supports get_edge and 
insert_edge in O(1) time

• The main loop, indexed by !, is executed "
times

• The inner loop contains of #("%) pairs of 
vertices, for each of which an # 1 computation 
is performed

• Total running time of the algorithm: #("()
• Asymptotically, this is not better than running 

DFS " times, which is #("% + "*)
• Floyd-Warshall matches the asymptotic bounds 

of repeated DFS when the graph is dense
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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Floyd-Warshall Algorithm - Example
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a direct edge from 5 to 4 does 
not exist.
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗"

i k j
1 1 1
2 2
3 3
4 4
5 5
6 6

7

No edges added starting with 
6-1.
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗"

i k j
1 1 1
2 2
3 3
4 4
5 5
6 6
7 7

No edges added starting with 
7-1.
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗#

i k j
1 1 1

2 2
3
4
5
6
7

The are no outgoing edges for 
!# - so no edges are added to 
the transitive closure.
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗$

i k j
1 1 1
2 2 2
3 3 3
4 4
5 5
6 6
7 7

4-3-1, add edge from 4 to 1
4-3-2, add edge from 4 to 2
5-3-1, a direct 5-1 edge exists
5-3-2, add edge from 5 to 2
5-3-4, a direct 5-4 edge exists
6-3-1, add edge from 6 to 1
6-3-2, a direct 6-2 edge exists
6-3-4, add edge from 6 to 4
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗%

i k j
1 1 1
2 2 2
3 3 3
4 4 4
5 5
6 6
7 7

1-4-2, add edge from 1 to 2
1-4-3, add edge from 1 to 3
3-4-1, a direct 3-1 edge exists
3-4-2, a direct 3-2 edge exists
5-4-1, a direct 5-1 edge exists
5-4-2, a direct 5-2 edge exists
5-4-3, a direct 5-3 edge exists
6-4-1, a direct 6-1 edge exists
6-4-2, a direct 6-2 edge exists
6-4-3, a direct 6-3 edge exists
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E

C

D F

G

A

B

!"

!#

!$

!%

!&

!'

!(

*⃗&

i k j
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6
7 7

6-5-1, a direct 6-1 edge exists
6-5-2, a direct 6-2 edge exists
6-5-3, a direct 6-3 edge exists
6-5-4, a direct 6-4 edge exists
7-5-1, add edge from 7 to 1
7-5-2, add edge from 7 to 2
7-5-3, add edge from 7 to 3
7-5-4, add edge from 7 to 4
*⃗&= *⃗'= *⃗(, stop.
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BFS in a Directed Graph
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BFS in a Directed Graph - Example
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G

C

E F

D

B

A

visited discovery 
edge

D None

• Start from vertex D, which is marked as visited (red)
• Assume that the outgoing edges of a vertex are considered in 

alphabetical order – e.g. for D: A, F, G

Current vertex: D
Edges to consider: to A, F, G
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G

C

E F

D

B

A

visited discovery 
edge

D None
A (D,A)
F (D,F)
G (D,G)

• Start from vertex D, which is marked as visited (red)
• Assume that the outgoing edges of a vertex are considered in 

alphabetical order – e.g. for D: A, F, G

Current level: D
Edges to consider: to A, F, G

Level 0
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G

C

E F

D

B

A

visited discovery 
edge

D None
A (D,A)
F (D,F)
G (D,G)
C (F,C)
B (G,B)

Current level: A, F, G
Edges to consider: (F, A), (F,C), (F,D), 
(F,G), (G,B), (G,C)

Level 0

Level 1
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G

C

E F

D

B

A

visited discovery 
edge

D None
A (D,A)
F (D,F)
G (D,G)
C (F,C)
B (G,B)
E (B, E)

Current level: B, C
Edges to consider: (B,E), (C, A), (C,B), 
(C,E)

Level 0

Level 1Level 2
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G

C

E F

D

B

A

visited discovery 
edge

D None
A (D,A)
F (D,F)
G (D,G)
C (F,C)
B (G,B)
E (B, E)

Current level: E
Edges to consider: (E,C), (E,G)
No new nodes for next level, BFS stop.

Level 0

Level 1Level 2

Level 3



Topological Ordering in
Directed Acyclic Graphs (DAGs)
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Directed Acyclic Graphs (DAGs)

• directed acyclic graphs are directed graphs without directed cycles

• DAGs are encountered in many practical applications

- Prerequisites between the courses for a degree program
- Inheritance between classes of an object-oriented program
- Scheduling constrains between the tasks of a project
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https://www.xkcd.com/754/

https://www.xkcd.com/754/
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Introduction to
Computational

Linguistics

Introduction to
Mathematics
for Linguists

Data Structures
and Algorithms

for CL

Programming 1

Programming 2

Text 
Technology

Grammar
Formalisms

Parsing
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G

C

E
F

D

BA

H

Introduction to
Computational

Linguistics

Introduction to
Mathematics
for Linguists

Data Structures
and Algorithms

for CL

Programming 1

Programming 2

Text 
Technology

Grammar
Formalisms

Parsing



Topological Ordering

• #⃗ is a directed graph with $ vertices

• A topological ordering of #⃗ is an ordering %&, %(, … , %* of the vertices of #⃗ such that for 
every edge (%,, %-) of #⃗, it is the case that / < 1.

• A topological ordering is an ordering such that any directed path in #⃗ traverses vertices in 
an increasing order

• A directed graph might have more than one topological orderings
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Alterante Topological Orderings (1)
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Introduction to
Computational

Linguistics

Introduction to
Mathematics
for Linguists

Data Structures
and Algorithms

for CL

Programming 1

Programming 2

Text 
Technology

Grammar
Formalisms

Parsing

1

2

3

4

5

6

7
8



Alterante Topological Orderings (2)
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Introduction to
Computational

Linguistics

Introduction to
Mathematics
for Linguists

Data Structures
and Algorithms

for CL

Programming 1

Programming 2

Text 
Technology

Grammar
Formalisms

Parsing

2

3

6

1

4

5

7
8



When does a Directed Graph Have a Topological Ordering?

• Proposition. "⃗ has a topological ordering if and only if it is acyclic.
• Justification.

- ⟹ Suppose "⃗ is topologically ordered. Assume that "⃗ has a cycle made of the edges
%&', %&) , %&), %&* , … , (%&-.), %&'). But "⃗ has a topological ordering, meaning that /0 <
/2 < ⋯ < /452 < /0 - impossible, therefore "⃗ must be acyclic.
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When does a Directed Graph Have a Topological Ordering?

• Proposition. "⃗ has a topological ordering if and only if it is acyclic.
• Justification.

- ⟸ Suppose "⃗ is acyclic. A topological ordering can be built using the following
algorithm:

• "⃗ is acyclic, therefore "⃗ must have a vertex with no incoming edges, %&
• if a vertex like %& would not exist, we would eventually encounter a vistied vertex when

tracing a path from the start index - would contradict "⃗ being acyclic
• thus by removing %& and its outgoing edges we obtrain another acyclic graph; this graph has, 

again, a vertex %' with no incoming edges
• repeat the process of removing the vertex with no incoming edges until "⃗ is empty
• %&, %', … , %* form an ordering of the vertices in "⃗; because of how it was constructed, if
%+, %, is an edge in "⃗, %+ must be deleted before %, can be deleted – thus - < / and
%&, %', … , %* is a topological ordering
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Topological Sorting
• topological sorting is an 

algorithm for computing a 
topological ordering of a 
directed graph

• incount is a dict, maps
- vertex ! to
- number of incoming

edges to ! (excluding
those from vertices that
have been added to the
topological order)

• also tests if #⃗ is acyclic: if
the algorithm terminates
without ordering all the
vertices, then the subgraph
of vertices that have not 
been ordered must contain
a cycle

Directed Graphs | 94



Topological Sorting - Example
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G

C

E
F

D

BA

H

0 0

1

1

2

3

2

3

• in the left box, the current incount of
each of the vertices in the graph

• in the right box, the index of the
vertex in the topological ordering
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G

C

E
F

D

BA

H

0 0

1

1

2

3

2

3

topo ready
B
A

• len(ready) > 0 == True
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G

C

E
F

D

BA

H

0 0

1

1

2

3

2

3

topo ready
A B

• pop A from ready, append it to
topo

• decrease the incount of all 
neighbours of A (on outgoing
edges): C, D
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G

C

E
F

D

BA

H

0 1 0

0

1

2

2

2

3

topo ready
A B

C

• if after the decrease any of the
vertices have an incount of 0, 
add it to ready

• pop C, add it to topo
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G

C

E
F

D

BA

H

0 1 0

0 2

0

2

1

2

2

topo ready
A B
C E

• decrease the incount of D, E and H
• add E to ready, since its incount is 0
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G

C

E
F

D

BA

H

0 1 0

0 2

0 3

2

1

2

2

topo ready
A B
C
E

• pop E from ready, add it to topo
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G

C

E
F

D

BA

H

0 1 0

0 2

0 3

1

1

2

2

topo ready
A B
C
E

• decrease the incount of G
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G

C

E
F

D

BA

H

0 1 0

0 2

0 3

1

1

2

2

topo ready
A B
C
E

• pop B from ready, add it to topo
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

1

2

2

topo ready
A
C
E
B

• pop B from ready, add it to topo
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0

1

2

topo ready
A
C
E
B

• decrease the incount of D and F
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0

1

2

topo ready
A D
C
E
B

• add D to ready, since its incount is 0
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0

1

2

topo ready
A D
C
E
B

• pop D from ready, add it to topo
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0 5

1

2

topo ready
A
C
E
B
D

• decrement the incount of F
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0 5

0

2

topo ready
A
C
E
B
D

• decrement the incount of F
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0 5

0

2

topo ready
A F
C
E
B
D

• add F to ready, its incount is 0
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0 5

0 6

2

topo ready
A
C
E
B
D
F

• pop F from ready, add to topo
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

1

0 5

0 6

2

topo ready
A
C
E
B
D
F

• decrement the incounts of G and H
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0

0 5

0 6

1

topo ready
A
C
E
B
D
F

• decrement the incounts of G and H
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0

0 5

0 6

1

topo ready
A G
C
E
B
D
F

• add G to ready, its incount is 0
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0 7

0 5

0 6

1

topo ready
A
C
E
B
D
F
G

• pop G from ready, add to topo
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0 7

0 5

0 6

1

topo ready
A
C
E
B
D
F
G

• decrement the incount of H
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0 7

0 5

0 6

0

topo ready
A
C
E
B
D
F
G

• decrement the incount of H
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0 7

0 5

0 6

0

topo ready
A H
C
E
B
D
F
G

• add H to ready, its incount is 0
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G

C

E
F

D

BA

H

0 1 0 4

0 2

0 3

0 7

0 5

0 6

0 8

topo ready
A

C

E

B

D

F

G

H

• pop H from ready, add to topo

• H has no outgoing nodes

• ready is empty – stop.

• the topological ordering of the

vertices is obtained in topo
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G
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Topological Sorting - Performance

• topological sorting runs in !(# + %) time, 
using !(#) auxiliary space

• it either computes a topological ordering of
(⃗ or fails to include some vertices –
meaning that (⃗ has a directed cycle
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Thank you.


