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Directed Graphs

« A directed graph or digraph G is a set V of vertices
— together with a collection E of pairwise
connections between vertices from I/, called edges
where all the edges in the graph are directed

* An edge e = (u, v) is directed from u to v if the pair
(u,v) is ordered, with u preceding v

 The first endpoint of a directed edge is called the
origin, and the second endpoint is called the
destination of the edge

- u is the origin, v is the destination of edge e
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Directed Graphs - Terminology

 the outgoing edges of a vertex are the edges whose origin is
that vertex

- The outgoing edges of vertex C are 1 and 2

« The incoming edges of a vertex are the edges whose
destination is that vertex

- The incoming edge of vertex C is 6

* [ug] Two vertices u and v are adjacent if there is an edge
whose end vertices are u and v

 [ug] An edge is called incident to a vertex if the vertex is one of
the edge’s endpoints

* [ug] The degree of a vertex, deg(v), is the number of incident
edges of v

» The in-degree and out-degree of a vertex v are the number of
incoming and outgoing edges of v, - indeg(v), outdeg(v)
- indeg(C) = 1, outdeg(C) = 2
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Directed Graph — Terminology (cont’d)

« A directed path is a path such that all edges are directed
and are traversed along their direction

- P=(A,7,B,4,D,3,E) is a directed simple path

» A directed cycle is a cycle such that all edges are
directed and are traversed along their direction

- C=(E,8,A,6,C,1,E) is a directed simple cycle

RRRRRRRRRRRR
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Directed Graph — Terminology (cont’d) @

A directed graph is called acyclic if it has Q G G

no directed cycles

- G is an acyclic graph

- A directed graph is strongly connected if @
for any two vertices u and v of G, u
reaches v and v reaches u

_ H is a strongly connected graph G

RRRRRRRRRRRR
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Directed Graph Properties

* Property 1. If G is a directed graph with m edges and vertex set I/, then

Z indeg(v) = z outdeg(v) = m

vev veV

« Justification. In a directed graph each edge (u, v) contributes:

- One unit to the out-degree of its origin u
- One unit to the in-degree of its destination v

- The total contribution is equal to the number of edges

RRRRRRRRRRRRR
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Directed Graph Properties (cont’d)

* Property 2. If G is a simple directed graph with n vertices and m edges, then
m<nn-1)
« Justification. The graph is simple — it has no parallel edges or self-loops.

- No two edges can have the same origin and destination
- There are no self-loops (edges with the same origin and destination)

- Therefore the maximum degree of a vertex is n-1

- It follows from property 1 thatm < n(n —1)
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The Graph ADT

UNIVERSITAT
TUBINGEN Graphs | 9



The Graph ADT - for directed graphs

« Agraph is a collection of vertices and edges

« Can be modelled as a combination of three data types: Vertex, Edge and Graph

» class Vertex

- Lightweight object storing the information provided by the user

- The element() method provides a way to retrieve the stored information
» class Edge

- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge

- endpoints() method: returns a tuple (u, v) such that vertex u is the origin of the edge
and vertex v is the destination

- opposite(v) method: assuming vertex v is one endpoint of an edge (either origin or
destination), return the other endpoint

RRRRRRRRRRRRR
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The Graph ADT - for directed graphs (cont’d)

« class Graph: can be either undirected or directed — flag provided to the constuctor

vertex_count()

returns the number of vertices of the graph

vertices()

returns an iteration of all the vertices of the graph

edge_count()

returns the number of edges of the graph

edges()

returns an interation of all the edges of the graph

get_edge(u,Vv)

returns the edge from vertex u to vertex v, if one exists, otherwise
None

degree(v, out=True)

returns the number of outgoing/incoming edges incident to vertex v,
as designated by the optional parameter out

incident_edges(v, out=True)

returns outgoing edges incident to vertex v by default; report
incoming edges if out=False

insert_vertex(v, x=None)

create and return a new Vertex storing element x

insert_edge(u,v, x=None)

create and return a new Edge from vertex u to vertex v, storing x

remove_vertex(v)

remove vertex v and all its incident edges from the graph

remove_edge(e)

UNILVEKSILIAL
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Traversals in a Directed Graph
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Traversals in a Directed Graph

« The DFS and BFS techniques presented in the previous lecture for undirected graphs can
be used to perform traversals of directed graphs

» The difference is that this time the edges can only be traversed from origin to destination,
but not in the opposite direction

 As in the undirected graphs case, traversal algorithms can solve interesting problems
dealing with reachability in a directed graph G:
- Computing a directed path from vertex u to vertex v, or report that no such path exists
- Finding all the vertices of G that are reachable from a given vertex s

_ Determine whether G is acyclic

- Determine whether G is strongly connected

RRRRRRRRRRRRR »
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DFS in a Directed Graph
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DFS in a Directed Graph - Example

@ Current vertex: D

Edges to consider: to A, F, G

visited discovery

edge
D None

O

« Start from vertex D, which is marked as visited (red)
« Assume that the outgoing edges of a vertex are considered in
alphabetical order —e.g. for D: A, F, G

RRRRRRRRRRRRR
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DFS in a Directed Graph - Example

visited discovery

edge

D None

@ A (D.A)

@ Current vertex: D

Edges to consider: to F, G
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DFS in a Directed Graph - Example

visited discovery

edge

D None
(D, A OA

@ Current vertex: A

Edges to consider: - (no
outgoing edges)
Finished A, backtrack to D
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DFS in a Directed Graph - Example

visited discovery
edge
D None
@ A (D.A)
F (D,F)

@ Current vertex: D

Edges to consider: to F, G
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DFS in a Directed Graph - Example

visited discovery

edge

D None
A (D,A)
F (D,F)

Current vertex: F
Edges to consider: to A, C, D, G
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DFS in a Directed Graph - Example

visited discovery

edge

D None
A (D,A)
F (D,F)
C (F,C)

Current vertex: F
Edges to consider: to C, D, G

RRRRRRRRRRRRR
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DFS in a Directed Graph - Example
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visited discovery
edge
D None
A (D,A)
F (D,F)
C (F,C)

Current vertex: C
Edges to consider: to A, B, E

Directed Graphs | 21



DFS in a Directed Graph - Example

visited discovery

edge

None
(D.A)
(D,F)
(F.C)
(C,B)

o O Mm > O

Current vertex: C
Edges to consider: to B, E
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DFS in a Directed Graph - Example

visited discovery

edge

None

m o O M >» O

@ Current vertex: B

Edges to consider: to E
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DFS in a Directed Graph - Example

visited discovery

edge

D N
® A oA
G F (D,F)
C (F,C)
G B (C,B)
E (B,E)
»G

@ Current vertex: E

Edges to consider: to C, G
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DFS in a Directed Graph - Example

visited discovery

edge

D
A (
G _—
C (F.C)
G B (C,B)
E (B,E)
= -

None

@ Current vertex: E

Edges to consider: to G
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DFS in a Directed Graph - Example

visited discovery

edge

D None

A (D,A)

F (D,F)

G C (F,C)

B (C,B)

E (B,E)

% &

N b Current vertex: G
_____________ Edges to consider: to B, C
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DFS in a Directed Graph - Example

visited discovery

edge

None

@ mw O Tmm > O

Current vertex: G
Edges to consider: to C
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DFS in a Directed Graph - Example

“

visited discovery

edge

None

G m w O M > O
A/—\Aj_?l/-\f\
O

—
~~——

S o > Current vertex: G

-
—y ——
N e e = —

Edges to consider: -
Finished G, backtracking to E
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DFS in a Directed Graph - Example

visited discovery

edge

None

(B
G

@ mw O Tmm > O

Current vertex: E
— Edges to consider: -
Finished E, backtracking to B

RRRRRRRRRRRRR
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DFS in a Directed Graph - Example

visited discovery

edge

None

(B
G

@ mw O Tmm > O

\ o Current vertex: B

Edges to consider: -
Finished B, backtracking to C
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DFS in a Directed Graph - Example

visited discovery

edge

None

O

@ mMm w O M > O
@ O

\ — Current vertex: C

Edges to consider: E

RRRRRRRRRRRRR
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DFS in a Directed Graph - Example

visited discovery

edge

None

@ mw O Tmm > O

DS
~
~
S~

Current vertex: C
Edges to consider: -
Finished C, backtracking to F

=

RRRRRRRRRRRRR
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DFS in a Directed Graph - Example

visited discovery

edge

None

@ mw O Tmm > O

Current vertex: F
Edges to consider: to D, G
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DFS in a Directed Graph - Example

visited discovery

edge

None

@ mw O Tmm > O

Current vertex: F
Edges to consider: to G
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DFS in a Directed Graph - Example

visited discovery

edge

None

G m w O M > O
A/—\Aj_-n\/-\/—\
O

Current vertex: F
Edges to consider: -
Finished F, backtracking to D
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DFS in a Directed Graph - Example

visited discovery

edge

None

O mw O T > O
M®@®OTOO
omwoO

\ o Current vertex: D

Edges to consider: to G
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DFS in a Directed Graph - Example

visited discovery

edge

None

@ mw O Tmm > O

-~ —
e o = w-—

\ o Current vertex: D

Edges to consider: -
Finished D — start vertex — stop.

RRRRRRRRRRRRR
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DFS Traversal — discovery edges

@ visited discovery

edge

D None

OPAARNG L on
F (D,F)

. C (F,C)
G G B (C,B)
E (B,E)

@ G (E,G)

UNIVERSITAT
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visited  discovery

edge
DFS Tree 0 None
A (D,A)
F (D,F)
C (F,C) IIIIIIIII
B (C,B)
E (B,E)
G (E,G)
Tree edge » discovery edge
- == »  back edge (connects a vertex to an ancestor in the DFS tree)
Nontree edges »  forward edge (connects a vertex to a descendant in the DFS tree)
RRRRRRRRRRRR g CrOSS edge (connects a vertex to another vertex that is neither its
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Properties of a DFS in a Digraph

 Proposition. A depth-first search in a directed graph G starting at a vertex s visits all the

vertices of G that are reachable from s. Also, the DFS tree contains directed paths from s
to every vertex reachable from s.

. Justification. Consider V; to be the subset of vertices of G visited by a DFS starting at s.
Need to show that I, contains s and every vertex reachable from s.

- Suppose that there is a vertex w reachable from s that is not in 1

- Consider a directed path from s to w and let (u, v) be the first edge on this path that
goesoutof I, »u €V, ve&l,

- When DFS reaches u, all outgoing edges of u are explored — thus it must also reach v
— then v € I, (contradiction)

- Second property — induction: each time a discovery edge (u, v) is identified, since u
was previously discovered, there exists a directed path from s to u; by appending the
discovery edge to the existing path, a directed path from s to v is obtained

RRRRRRRRRRRRR
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Graph Class,
part 1
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class Graph:
""" Representation of a simple graph using an adjacency map.

def __init__(self, directed=False):
""" Create an empty graph (undirected, by default).

Graph is directed if optional paramter is set to True.

self._outgoing = { }
# only create second map for directed graph; use alias for undirected
self._incoming = { } if directed else self._outgoing

def is_directed(self):
""" Return True if this is a directed graph; False if undirected.

Property is based on the original declaration of the graph, not its contents.

return self._incoming is not self._outgoing # directed if maps are distinct

def vertex_count(self):
""" Return the number of vertices in the graph.
return len(self._outgoing)

def vertices(self):
""" Return an iteration of all vertices of the graph.”"”
return self._outgoing.keys()

def edge_count(self):
""" Return the number of edges in the graph.”""
total = sum(len(self._outgoing[v]) for v in self._outgoing)
# for undirected graphs, make sure not to double-count edges
return total if self.is_directed( ) else total // 2

def edges(self):
""" Return a set of all edges of the graph.
result = set( ) # avoid double-reporting edges of undirected graph
for secondary_map in self._outgoing.values():
result.update(secondary_map.values()) # add edges to resulting set
return result
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40  def get_edge(self, u, v):

41 """ Return the edge from u to v, or None if not adjacent.”"”"
42 return self._outgoing[u].get(v) # returns None if v not adjacent
Graph Class, 43
44 def degree(self, v, outgoing=True):
pal't 2 45 """ Return number of (outgoing) edges incident to vertex v in the graph.
46
47 If graph is directed, optional parameter used to count incoming edges.
48
49 adj = self._outgoing if outgoing else self._incoming
50 return len(adj[v])
51
52  def incident_edges(self, v, outgoing=True):
53 """ Return all (outgoing) edges incident to vertex v in the graph.
54
55 If graph is directed, optional parameter used to request incoming edges.
56
57 adj = self._outgoing if outgoing else self._incoming
58 for edge in adj|v].values():
59 yield edge
60
61  def insert_vertex(self, x=None):
62 """Insert and return a new Vertex with element x."""

63 v = self.Vertex(x)
64 self._outgoing[v] = { }
65 if self.is_directed():

66 self._incoming[v] = { } # need distinct map for incoming edges
67 return v

68

69  def insert_edge(self, u, v, x=None):

70 """ Insert and return a new Edge from u to v with auxiliary element x."""

71 e = self.Edge(u, v, x)
72 self._outgoing[u][v] = e
73 self._incoming|[v][u] = e

EBERHARD KARLS am
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Depth-First Search in a Directed Graph — Python Implementation

def DFS(g, u, discovered):

Perform DFS of the undiscovered portion of Graph g starting at Vertex u. result = {u : None}

DFS(g, u, result)

1

2

3

4  discovered is a dictionary mapping each vertex to the edge that was used to
5  discover it during the DFS. (u should be "discovered” prior to the call.)

6  Newly discovered vertices will be added to the dictionary as a result.

7 e

8

for e in g.incident_edges(u): # for every outgoing edge from u
9 v = e.opposite(u)
10 if v not in discovered: # v is an unvisited vertex
11 discovered[v] = e # e is the tree edge that discovered v
12 DFS(g, v, discovered) # recursively explore from v

52  def incident_edges(self, v, outgoing=True):

53 """ Return all (outgoing) edges incident to vertex v in the graph.
54
55 If graph is directed, optional parameter used to request incoming edges.
56 mmnn
57 adj = self._outgoing if outgoing else self._incoming
58 for edge in adj|v].values():
59 yield edge
Uﬁéﬁé@?@ Directed Graphs | 43



DFS in a Directed Graph — Running Time

» Consider G, a directed graph with n vertices and m edges. A DFS traversal of G can be
performed in O(n + m) time.

- provided the graph is represented using a data structure where the incident edges of
a vertex (both incoming and outgoing) can be iterated in O(deg(v)) time, and finding
the opposite vertex takes 0(1) time

- The DFS procedure will be called at most once for every vertex of the graph
- Each edge will be examined at most once in a directed graph, from its origin vertex

RRRRRRRRRRRRR
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Problems Solved using a DFS Traversal in a Directed Graph

1. Computing a directed path from vertex u to vertex v, or report that no such path exists
Testing whether G is strongly connected
Computing the set of vertices of G that are reachable from a given vertex s

Computing a directed cycle in G, or reporting that G is acyclic

a k~ w0 Db

Computing the transitive closure of G

RRRRRRRRRRRRR
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1. Compute a Directed Path from u to v

« Assume DFS was performed for the digraph

 Exactly the same algorithm as in the undirected case - build the path from end to start

RRRRRRRRRRRR
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def construct_path(u, v, discovered):
path = [ ] # empty path by default
if v in discovered:
# we build list from v to u and then reverse it at the end
path.append(v)
walk = v
while walk is not u:
e = discovered|walk] # find edge leading to walk
parent = e.opposite(walk)
path.append(parent)
walk = parent
path.reverse( ) # reorient path from u to v
return path
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2. Testing whether Gis strongly connected

» That is, if for every pair of vertices u and v, u reaches v and v reaches u

* |dea: start an independent DFS traversal from each vertex of G. If the discovered
dictionary of every of these independent DFS traversals has length n (the number of

vertices), then G is strongly connected

* Running time: ?

RRRRRRRRRRRRR
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2. Testing whether Gis strongly connected
» That is, if for every pair of vertices u and v, u reaches v and v reaches u

* |ldea: start an independent DFS traversal from each vertex of G. If the discovered
dictionary of every of these independent DFS traversals has length n (the number of
vertices), then G is strongly connected

* Running time: 0(n(n + m)), not that great
 Better idea:

- Start with doing a DFS from an arbitrary vertex s.

- If the discovered dictionary does not contain all the vertices — the digraph is not
strongly connected - stop.

- Otherwise, construct a copy of the graph G, but where the orientation of each edge is
reversed. Perform a DFS on the reversed graph. If discovered contains all vertices —
the digraph is strongly connected. Otherwise it is not.

- Runs in O(n + m) time
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3. Computing the Vertices Reachable from a Given Start Vertex s

» Perform a DFS traversal G starting from s

* The set of vertices reachable from s are the keys of the discovered dictionary

EEEEEEEEEEEEEE
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4. Compute a Directed Cycle in G, or Report that G is Acyclic

» The DFS procedure was already performed for the graph G

» A cycle exists if and only if a back edge exists with respect to the DFS traversal of that
graph

* In a directed graph DFS traversal, there are multiple types of nontree edges: back edges,
forward edges and cross edges

* When a directed edge is explored, leading to a previously visited vertex, keep track of
whether that vertex is an ancestor of the current vertex

 To obtain the cycle, take the back edge from the descendant to the ancestor and then
follow DFS tree edges back to the descendant

RRRRRRRRRRRRR
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4. Compute a Directed Cycle in G, or Report that G is Acyclic

o
........

> diSCOVGry edge

- mm s o > baCk edge
> forward edge
RRRRRRRRRRRR cieeenenep Cross edge
UNIVERSITAT %¢
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5. Computing the Transitive Closure of G

 Particular graph applications benefit from being able to answer reachability questions
more efficiently

- e.g. a service that computes driving destinations from point a to point b; a first step is
to find about if b can be reached starting from a

* Precompute a more efficient representation for the graph that can answer such queries,
and then reuse it for all the reachability queries

« A transitive closure of a directed graph G is itself a directed graph G* such that

- the vertices of G* are the same vertices of G and

- G* has an edge (u, v) whenever G has a directed path from u to v, including the case
where (u, v) is an edge of the original graph G

RRRRRRRRRRRRR
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5. Computing the Transitive Closure of G: Method A

. If G is a graph with n vertices and m edges represented as an adjacency list or an
adjacency map, then

« Compute the transitive closure by making n sequential DFS traversals of the graph, one
starting at each vertex

» E.g. the DFS starting at vertex u will determine all vertices reachable from u — the
transitive closure includes all the edges starting at u to each of the vertices that are
reachable from u

« Thus computing the transitive closure of a digraph using several DFS traversals can be
done in ? time

RRRRRRRRRRRRR
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5. Computing the Transitive Closure of G: Method A

. If G is a graph with n vertices and m edges represented as an adjacency list or an
adjacency map, then

« Compute the transitive closure by making n sequential DFS traversals of the graph, one
starting at each vertex

» E.g. the DFS starting at vertex u will determine all vertices reachable from u — the
transitive closure includes all the edges starting at u to each of the vertices that are
reachable from u

« Thus computing the transitive closure of a digraph using several DFS traversals can be
done in O(n(n + m)) time

 Remember, the transitive closure is precomputed once and queried many times

RRRRRRRRRRRRR
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5. Computing the Transitive Closure of G: Method B

- IfGisa graph with n vertices and m edges represented

by a data structure that supports O(1) lookup for
get_edge(u,Vv) (e.g. an adjacency matrix), then

« Compute the transitive closure of G in a series of rounds
_ Initially, Go= G
- Define an arbitrary order over the vertices of G,

V1, VU3, ..., Vn
- Compute the rounds, starting with round 1

-------------
Emmgy
--------
na,
gy
Ny
uy
[
[
]
'
4
4
.
.
*

- At round k, construct a directed graph 5k starting
with 5k = 5k_1, and adding to 5k the directed edge
(vi, vj) if 5k_1 contains both edges (v;, vx) and (v, v;).
» This method of computing the transitive closure of a
digraph is known as the Floyd-Warshall algorithm

RRRRRRRRRRRR N en
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Floyd-Warshall Algorithm - Pseudocode

—

Algorithm FloydWarshall(G):

Input: A directed graph G with n vertices
Output: The transitive closure G* of G

letvi,va,..., v, be an arbitrary numbering of the vertices of G

! /

Go=G
for k = 1tondo
G = G
foralli,jin {1,...,n} with i # jand i, j # k do
if both edges (v;,vx) and (v¢,v;) are in G;—; then
add edge (v;,v;) to G (if it is not already present)
return é,,

RRRRRRRRRRRRR
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Floyd-Warshall Algorithm — Running Time

* If the data structure supports get_edge and
insert_edge in O(1) time

* The main loop, indexed by k, is executed n

Algorithm FloydWarshall(G): .
Imes

Input: A directed graph G with n vertices
Output: The transitive closure G* of G

- o : : 2 :
l_E‘:t VIV2,5.ey v, be an arbitrary numbering of the vertices of G The inner |OOp contains of 0 (n ) pairs of

? ?

Go =G vertices, for each of which an 0(1) computation
fork = 1tondo )
Gp = Gy is performed
foralli,jin {1,...,n} withi # jand i, j# k do
if both edges (vi,vx) and (vi,v;) are in Gy then « Total running time of the algorithm: 0 (n®)
add edge (v;,v;) to G (if it is not already present)
return G, » Asymptotically, this is not better than running

DFS n times, which is O(n? + nm)

* Floyd-Warshall matches the asymptotic bounds
of repeated DFS when the graph is dense
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Floyd-Warshall Algorithm - Example

G)\’
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Floyd-Warshall Algorithm - Example

1 1 1 i=j, continue

e
@& 7O\ B
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Floyd-Warshall Algorithm - Example

2 j=k, continue

e
@& 7O\ B
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Floyd-Warshall Algorithm - Example

2 2 i=], continue

e
@& 7O\ B
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Floyd-Warshall Algorithm - Example

177 3 i+j+k

Does G have the edges (v,,vy)

10 ARG
and (v4,v3)? No, it doesn’t

G have either, continue.
U3

RRRRRRRRRRRRR
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Floyd-Warshall Algorithm - Example

G)\’

A W N -

i#j*k

@& 7O\ B

Does G have:

- (v,,v1) -NO
- (vq,v4) —yeS
Continue.
(A, vs
. G
Us
G,
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Floyd-Warshall Algorithm - Example

1 1 1
2 2
©N ’
4
@ 5 i#j+k
() 6 G
G Does G have:
- (UZJ vl) - NO
Q U3 B (vlrv5) - NO
G Continue.
1
Us 2-1-6, 2-1-7 will also not add
edges because (v,, v,) does
> not exist.
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Floyd-Warshall Algorithm - Example

2// 2 i%j*k
G)\’ :

@& 7O\ B

G Does G have:
- (v3,vq) -yes
Q V3 - (v, ) -no
G Continue.
(%1
Us
Gy
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Floyd-Warshall Algorithm - Example

”7 3 3 i=j,
continue
v, (B) O G
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Floyd-Warshall Algorithm - Example
ON :

A W N -

i=j+k
() 6 G
G Does G have:
- (v31 vl) - yes
Q Vs - (v, 1) - yes
V1 E A direct edge (v3,v,) already

Us exists, continue.

Directed Graphs | 67
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Floyd-Warshall Algorithm - Example

G) ’
@ i+j+k
v (B (F)

OO B WODN -

G Does G have:
- (v3,vy) -yes
(A ’s - (v1,v5) -0
! G Continue. 3-1-6 and 3-1-7 wont
Us add edges, since 1-6 and 1-7
do not exist.
Gy
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Floyd-Warshall Algorithm - Example

1 1 1
2 2
4 4
D ;
() 6 G 0
7
G No edges added starting with
4-1.
(A, v
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Floyd-Warshall Algorithm - Example

o A WODN -
N OO O A WODN -

The edge 5-1-4 can be added,
a direct edge from 5 to 4 does
not exist.
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Floyd-Warshall Algorithm - Example

o O A WODN -
o O A WODN -

No edges added starting with
6-1.
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Floyd-Warshall Algorithm - Example

N OO o B~ WODN -
o O A WODN -

No edges added starting with
7-1.
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Floyd-Warshall Algorithm - Example

() 6 G
. G The are no outgoing edges for

N OO O A WODN -

v, - SO NO edges are added to
the transitive closure.
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Floyd-Warshall Algorithm - Example

N OO o B~ WODN -
~N OO o B~ WODN -

4-3-1, add edge from 4 to 1
4-3-2, add edge from 4 to 2
5-3-1, a direct 5-1 edge exists
5-3-2, add edge from 5 to 2
5-3-4, a direct 5-4 edge exists
6-3-1, add edge from 6 to 1
6-3-2, a direct 6-2 edge exists
S 6-3-4, add edge from 6 to 4

RRRRRRRRRRRR

RTINS ¢ Directed Graphs | 74



Floyd-Warshall Algorithm - Example

1

o b~
~
o O A WO DN -~

14 14

1-4-2, add edge from 1 to 2

1-4-3, add edge from 1 to 3

3-4-1, a direct 3-1 edge exists
3-4-2, a direct 3-2 edge exists
95-4-1, a direct 5-1 edge exists
95-4-2, a direct 5-2 edge exists
9-4-3, a direct 5-3 edge exists
6-4-1, a direct 6-1 edge exists
G, 6-4-2, a direct 6-2 edge exists

RRRRRRRRRRRRR
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Floyd-Warshall Algorithm - Example

A WO DN -
o ~ WODN -
oo O A WODN -

5
6
7 7

6-5-1, a direct 6-1 edge exists
6-5-2, a direct 6-2 edge exists
6-5-3, a direct 6-3 edge exists
6-5-4, a direct 6-4 edge exists
7-5-1, add edge from 7 to 1
7-5-2, add edge from 7 to 2
7-5-3, add edge from 7 to 3
7-5-4, add edge from 7 to 4

Gg 55= 56= §7, stop.
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Floyd-Warshall Algorithm — Python Implementation
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O ON i W IN =

bt e e ek e
N DN B W= O \O

def floyd_warshall(g):

""" Return a new graph that is the transitive closure of g."""
closure = deepcopy(g) # imported from copy module
verts = list(closure.vertices()) # make indexable list
n = len(verts)
for k in range(n):
for i in range(n):
# verify that edge (i,k) exists in the partial closure
if i != k and closure.get_edge(verts][i],verts[k]) is not None:
for j in range(n):
# verify that edge (k,j) exists in the partial closure
if i |=j != k and closure.get_edge(verts[k],verts[j]) is not None:
# if (i,j) not yet included, add it to the closure
if closure.get_edge(verts|i|,verts[j]) is None:
closure.insert_edge(verts|i],verts[j])
return closure
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BFS in a Directed Graph
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BFS in a Directed Graph - Example

@ Current vertex: D

Edges to consider: to A, F, G

visited discovery

edge
D None

O

« Start from vertex D, which is marked as visited (red)
« Assume that the outgoing edges of a vertex are considered in
alphabetical order —e.g. for D: A, F, G

RRRRRRRRRRRRR
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BFS in a Directed Graph - Example

visited discovery
edge
Level O D None
A (D,A)
F (D,F)
G (D,G)

Current level: D
Edges to consider: to A, F, G

« Start from vertex D, which is marked as visited (red)
« Assume that the outgoing edges of a vertex are considered in
alphabetical order —e.g. for D: A, F, G

RRRRRRRRRRRRR »
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BFS in a Directed Graph - Example

visited discovery

edge

/ — Level 0 D None
/@\ A (D,A)

/ \ F (D,F)

G G (D.G)

A C (F,C)
l G \ B (G.,B)

O

Current level: A, F, G
Level 1 Edges to consider: (F, A), (F,C), (F,D),
(F,G), (G,B), (G,C)

RRRRRRRRRRRRR
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BFS in a Directed Graph - Example

visited discovery

edge

Level O D None

A (D,A)

F (D,F)

G (D,G)

C (F,C)

B (G,B)

E (B, E)

\ Current level: B, C
Level 2 Level 1 Edges to consider: (B,E), (C, A), (C,B),

(C.E)

EEEEEEEEEE B
UNIVERSITAT ¢
TUBINGEN 7
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BFS in a Directed Graph - Example

visited discovery

edge

Level 0 None

(D.A)
(D.F)
(D.G)
(F.C)
(G,B)
(B, E)

m W O @ mMm >» O

Current level: E
Level 1 Edges to consider: (E,C), (E,G)
No new nodes for next level, BFS stop.
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Topological Ordering in
Directed Acyclic Graphs (DAGS)
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Directed Acyclic Graphs (DAGs)

« directed acyclic graphs are directed graphs without directed cycles
* DAGs are encountered in many practical applications

- Prerequisites between the courses for a degree program
- Inheritance between classes of an object-oriented program
- Scheduling constrains between the tasks of a project
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FAGE 3
DEPARTMENT COURSE

DESCRIPTON

PREREQS

COMPUTER CPSC Y32
SCIENCE

INTERMEDIATE. COMPILER
DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

CPSC 432

https://www.xkcd.com/754/
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Topological Ordering

e G is a directed graph with n vertices

« A topological ordering of G is an ordering vy, v,, ..., v, Of the vertices of G such that for
every edge (v;, v;) of G, itis the case that i < j.

A topological ordering is an ordering such that any directed path in G traverses vertices in
an increasing order

A directed graph might have more than one topological orderings
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2 1
Introduction to

Alterante Topological Orderings (2) Computational Introduction to

; > Mathematics
Inguistics for Linguists

3
. Text
Programming 1 Technology
4 Grammar
Formalisms
6 5
Programming 2
Data Structures
and Algorithms
for CL
/
8
Parsing
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When does a Directed Graph Have a Topological Ordering?

» Proposition. G has a topological ordering if and only if it is acyclic.
« Justification.
- = Suppose G is topologically ordered. Assume that G has a cycle made of the edges
(vi,,vi,), (vi,, vi,), oo, (Vi v;,)- But G has a topological ordering, meaning that iy <
i1 < <lip_q <ip-impossible, therefore G must be acyclic.
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When does a Directed Graph Have a Topological Ordering?

» Proposition. G has a topological ordering if and only if it is acyclic.
« Justification.
- & Suppose G is acyclic. A topological ordering can be built using the following
algorithm:
. Gis acyclic, therefore G must have a vertex with no incoming edges, v,
- if a vertex like v; would not exist, we would eventually encounter a vistied vertex when
tracing a path from the start index - would contradict G being acyclic
 thus by removing v; and its outgoing edges we obtrain another acyclic graph; this graph has,
again, a vertex v, with no incoming edges
* repeat the process of removing the vertex with no incoming edges until G is empty

* V4, V9, ..., U, fOorm an ordering of the vertices in G: because of how it was constructed, if
(vi,vj) is an edge in G, v; must be deleted before v; can be deleted — thus i < j and
vy, Uy, ..., Uy IS @ topological ordering
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* topological sorting is an
Topological Sorting algorithm for computing a
topological ordering of a
directed graph

def topological_sort(g):

1

2 """Return a list of verticies of directed acyclic graph g in topological order.

3

4 If graph g has a cycle, the result will be incomplete. * 1ncount is a di ct, maps

5 o

6 topo =[] # a list of vertices placed in topological order - vertex u tO- .

7 ready =[] # list of vertices that have no remaining constraints - number of Incoming

8 incount = { } # keep track of in-degree for each vertex d t ludi

9  for u in g.vertices(): edges o u (eXC uding

10 incount[u] = g.degree(u, False)  # parameter requests incoming degree those from vertices that
11 if incount[u] == 0: # if u has no incoming edges,

12 ready.append(u) # it is free of constraints have been added to the
13 while len(ready) > 0: topologlcal Order)

14 u = ready.pop( ) # u is free of constraints S o

15 topo.append(u) # add u to the topological order e also tests if G is aCyC“C: if
16 for e in g.incident_edges(u): # consider all outgoing neighbors of u . .

. v = e.opposite(u) the algorithm terminates

18 incount[v] —=1 # v has one less constraint without u without Ordering all the

19 if incount[v] == 0: :
20 ready.append(v) vertices, then the subgraph
21 retumn topo of vertices that have not

been ordered must contain
RRRRRRRRRRRR a cycle
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Topological Sorting - Example

0 0 - in the left box, the current incount of
@ each of the vertices in the graph
* in the right box, the index of the
1 @ vertex in the topological ordering

1@3@@)

0

G,
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Topological Sorting - Example
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®)

topo ready

len(ready) > 0 == True
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Topological Sorting - Example

®)

topo ready

2 « pop A from ready, append it to
topo
@ - decrease the incount of all
neighbours of A (on outgoing
edges): C, D
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Topological Sorting - Example

i (E) &
2 - if after the decrease any of the

vertices have an incount of O,

> @ add it to ready
« pop C, add it to topo
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Topological Sorting - Example

EEEEEEEEEEE
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» decrease the incount of D, E and H
« add E to ready, since its incount is 0

Directed Graphs | 99



Topological Sorting - Example
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pop E from ready, add it to topo
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Topological Sorting - Example
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decrease the incount of G

Directed Graphs | 101



Topological Sorting - Example
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pop B from ready, add it to topo
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Topological Sorting - Example

topo ready

2 * pop B from ready, add it to topo
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Topological Sorting - Example

topo ready

1 e decrease the incount of D and F
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Topological Sorting - Example

topo ready

1 « add D to ready, since its incount is O
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Topological Sorting - Example

topo ready

1 « pop D from ready, add it to topo
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Topological Sorting - Example

topo ready

o
N
O o mO

1 « decrement the incount of F
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Topological Sorting - Example

topo ready

o
N
O o mO

0 « decrement the incount of F
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Topological Sorting - Example

topo ready

o
N
O o mO

0  add F to ready, its incount is 0

RRRRRRRRRRRRR

U%\éFNRéIgIQIAT Directed Graphs | 109



Topological Sorting - Example

topo ready

o
N
O o mO

0[6 « pop F from ready, add to topo
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Topological Sorting - Example

topo ready

o
N
O o mO

0|6  decrement the incounts of G and H
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Topological Sorting - Example

topo ready

o
N
O o mO

0|6  decrement the incounts of G and H
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Topological Sorting - Example

topo ready

01 04 A G
C
012 =
B
D
0[5
F
0[3 L .
0[6 « add G to ready, its incount is O
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U%\éFNRéIETST Directed Graphs | 113



Topological Sorting - Example

topo ready

01 04 A
C
0/2 E
B
D
0[5
F
oL 0[6 G
07 « pop G from ready, add to topo
1

RRRRRRRRRRRRR
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Topological Sorting - Example

topo ready

01 0|4 A
C
02 E
B
D
0[5
F
0
. 0|6 G
0l7 e decrement the incount of H
1

RRRRRRRRRRRRR
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Topological Sorting - Example

topo ready

01 0|4 A
C
02 E
B
D
0[5
F
0
. 0|6 G
0l7 e decrement the incount of H
0]
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Topological Sorting - Example

topo ready

01 0(4 A H

C

0]2 E
B

D

015
F
0
. 0]6 G
0l7 « add H to ready, its incount is 0
0
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Topological Sorting - Example

topo ready

01 04 A
C
0[2 =
B
D
0[5
F
0]3 G G
H
07 « pop H from ready, add to topo

* H has no outgoing nodes

* ready is empty — stop.

 the topological ordering of the
0]8 vertices is obtained in topo
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Topological Sorting - Performance

» topological sorting runs in O0(n + m) time,
using 0 (n) auxiliary space

def topological_sort(g):

1

2 """Return a list of verticies of directed acyclic graph g in topological order. ° |t e|ther Computes a t0p0|og|Ca| Ordeﬂng Of
3

4 If graph g has a cycle, the result will be incomplete. 5 or falls to |nclude some Ver‘tlces —
5 e

6 topo =[] # a list of vertices placed in topological order ' ~ H

7 ready =[] # list of vertices that have no remaining constraints meanlng that G haS a dlreCted CyCIe
8 incount = { } # keep track of in-degree for each vertex

9  for u in g.vertices():

10 incount[u] = g.degree(u, False)  # parameter requests incoming degree

11 if incount[u] == 0: # if u has no incoming edges,

12 ready.append(u) # it is free of constraints

13 while len(ready) > 0:

14 u = ready.pop( ) # u is free of constraints

15 topo.append(u) # add u to the topological order

16 for e in g.incident_edges(u): # consider all outgoing neighbors of u

17 v = e.opposite(u)

18 incount[v] —=1 # v has one less constraint without u

19 if incount[v] == 0:

20 ready.append(v)

21 return topo
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Thank you.
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