
Corina Dima
corina.dima@uni-tuebingen.de

Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Graph Traversals

Graph Traversals | 2

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

14.3 Graph Traversals
v Depth-First Search
v DFS Implementation and

Extensions
v Breadth-First Search

Graph Traversals

• Formally, a traversal is a systematic procedure for exploring a graph by examining all of
its vertices and edges

• A traversal is efficient if it visits all the vertices and edges in time proportional to their
number – i.e. in linear time

• Graph traversal algorithms can answer many questions involving reachability in an
undirected graph !:

- Compute a path from a vertex " to a vertex #, or report that such a path does not exist
- Given a start vertex $ from !, compute, for every vertex # of G, a path with minimum

number of edges between $ and #, or report that no such path exists
- Test whether ! is a connected graph
- Compute a spanning tree of !, if ! is connected
- Compute the connected components of !
- Compute a cycle in !, or report that ! has no cycles

Graph Traversals | 3

Depth-First Search

Graph Traversals | 4

Graph Traversals | 5

https://xkcd.com/761/
https://www.explainxkcd.com/wiki/index.php/761:_DFS

https://xkcd.com/761/
https://www.explainxkcd.com/wiki/index.php/761:_DFS

Depth-First Search: Intuition

• Imagine wandering through a labyrinth with a string and a can of paint without
getting lost; each intersection is a vertex

• We begin with a specific starting vertex ! of ", and initialize it by tying the string and
paining ! as #$!$%&' – ! is now our current vertex, call it (

• Traverse " by considering an arbitrary edge ((, #) incident to the current vertex (
- If ((, #) leads to a #$!$%&' vertex # (# is painted), then ignore edge
- If ((, #) leads to an unvisited vertex #, then unroll the string, go to #, paint # as

visited, make it the current vertex, and continue the process with the edges
incident to #

Graph Traversals | 6

• Will eventually hit a dead end: a current vertex # where all the incident edges lead to visited vertices;
then roll string back up, backtrack to the edge that brought us to # – go back to (, and continue with
visiting (

• Finish when backtracking leads back to ! and there are no more edges of ! to explore

Depth-First Search - Edges

• The DFS traversal identifies the depth-first search tree rooted at the starting vertex !
• Whenever an edge " = (%, ') is used to discover a new vertex during the execution of

DFS, the edge is known as a discovery edge or a tree edge

• All other edges from the DFS traversal are called nontree edges, which lead to already
visited vertices

• In an undirected graph explored nontree edges connect the current vertex to one of its
ancestors in the DFS tree – they are called back edges.

Graph Traversals | 7

Depth-First Search - Algorithm

Graph Traversals | 8

DFS in an Undirected Graph - Example

Graph Traversals | 9

A B C D

E

I

M

F G H

J K L

N O P

• Start from vertex A, which is marked as visited (red)
• Assume that the edges adjacent to a vertex are considered in

alphabetical order – e.g. for A: B, E, F

visited discovery
edge

A None

Current vertex: A
Edges to consider: to B, E, F

DFS in an Undirected Graph - Example

Graph Traversals | 10

A B C D

E

I

M

F G H

J K L

N O P

• Consider the edge that leads to B
• B is not visited – mark B as visited
• Mark (A,B) as a discovery edge
• Make B the current vertex

visited discovery
edge

A None

B (A,B)

Current vertex: A
Edges to consider: to E, F

DFS in an Undirected Graph - Example

Graph Traversals | 11

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

Current vertex: B
Edges to consider: to A, C, F

DFS in an Undirected Graph - Example

Graph Traversals | 12

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

Current vertex: B
Edges to consider: to C, F

DFS in an Undirected Graph - Example

Graph Traversals | 13

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

Current vertex: C
Edges to consider: to B, D, G

DFS in an Undirected Graph - Example

Graph Traversals | 14

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

Current vertex: C
Edges to consider: to D, G

DFS in an Undirected Graph - Example

Graph Traversals | 15

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

Current vertex: D
Edges to consider: to C, G, H

DFS in an Undirected Graph - Example

Graph Traversals | 16

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

Current vertex: D
Edges to consider: to G, H

DFS in an Undirected Graph - Example

Graph Traversals | 17

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

Current vertex: G
Edges to consider: to C, D, J, K, L

DFS in an Undirected Graph - Example

Graph Traversals | 18

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

Current vertex: G
Edges to consider: to D, J, K, L

DFS in an Undirected Graph - Example

Graph Traversals | 19

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

Current vertex: G
Edges to consider: to J, K, L

DFS in an Undirected Graph - Example

Graph Traversals | 20

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

Current vertex: J
Edges to consider: to G, I, K

DFS in an Undirected Graph - Example

Graph Traversals | 21

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

Current vertex: J
Edges to consider: to I, K

DFS in an Undirected Graph - Example

Graph Traversals | 22

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

Current vertex: I
Edges to consider: to E,F,J,M,N

DFS in an Undirected Graph - Example

Graph Traversals | 23

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

Current vertex: E
Edges to consider: to A, F, I

DFS in an Undirected Graph - Example

Graph Traversals | 24

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: E
Edges to consider: to F, I

DFS in an Undirected Graph - Example

Graph Traversals | 25

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: F
Edges to consider: to A, B, E, I

DFS in an Undirected Graph - Example

Graph Traversals | 26

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: F
Edges to consider: to B, E, I

DFS in an Undirected Graph - Example

Graph Traversals | 27

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: F
Edges to consider: to E, I

DFS in an Undirected Graph - Example

Graph Traversals | 28

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: F
Edges to consider: to I

DFS in an Undirected Graph - Example

Graph Traversals | 29

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Finished F (gray), backtracking to E

DFS in an Undirected Graph - Example

Graph Traversals | 30

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: E
Edges to consider: to I

DFS in an Undirected Graph - Example

Graph Traversals | 31

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)
J (G,J)
I (J,I)
E (I, E)
F (E, F)

Finished E, backtracking to I

DFS in an Undirected Graph - Example

Graph Traversals | 32

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: I
Edges to consider: to F,J,M,N

DFS in an Undirected Graph - Example

Graph Traversals | 33

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

Current vertex: I
Edges to consider: to J,M,N

DFS in an Undirected Graph - Example

Graph Traversals | 34

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

Current vertex: I
Edges to consider: to M,N

DFS in an Undirected Graph - Example

Graph Traversals | 35

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

Current vertex: M
Edges to consider: to I, N

DFS in an Undirected Graph - Example

Graph Traversals | 36

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

Current vertex: M
Edges to consider: to N

DFS in an Undirected Graph - Example

Graph Traversals | 37

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

Current vertex: N
Edges to consider: to I, K, M

DFS in an Undirected Graph - Example

Graph Traversals | 38

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

Current vertex: N
Edges to consider: to K, M

DFS in an Undirected Graph - Example

Graph Traversals | 39

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

Current vertex: K
Edges to consider: to G, J, N, O

DFS in an Undirected Graph - Example

Graph Traversals | 40

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

Current vertex: K
Edges to consider: to J, N, O

DFS in an Undirected Graph - Example

Graph Traversals | 41

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

Current vertex: K
Edges to consider: to N, O

DFS in an Undirected Graph - Example

Graph Traversals | 42

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: K
Edges to consider: to O

DFS in an Undirected Graph - Example

Graph Traversals | 43

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: O
Edges to consider: to K

DFS in an Undirected Graph - Example

Graph Traversals | 44

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Finished O, backtracking to K

DFS in an Undirected Graph - Example

Graph Traversals | 45

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: K
Edges to consider: -
Finished K, backtracking to N

DFS in an Undirected Graph - Example

Graph Traversals | 46

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: N
Edges to consider: M

DFS in an Undirected Graph - Example

Graph Traversals | 47

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: N
Edges to consider: -
Finished N, backtracking to M

DFS in an Undirected Graph - Example

Graph Traversals | 48

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: M
Edges to consider: -
Finished M, backtracking to I

DFS in an Undirected Graph - Example

Graph Traversals | 49

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: I
Edges to consider: N

DFS in an Undirected Graph - Example

Graph Traversals | 50

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: I
Edges to consider: -
Finished I, backtracking to J

DFS in an Undirected Graph - Example

Graph Traversals | 51

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: J
Edges to consider: to K

DFS in an Undirected Graph - Example

Graph Traversals | 52

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: J
Edges to consider: -
Finished J, backtracking to G

DFS in an Undirected Graph - Example

Graph Traversals | 53

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

Current vertex: G
Edges to consider: to K, L

DFS in an Undirected Graph - Example

Graph Traversals | 54

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)
Current vertex: G
Edges to consider: to L

DFS in an Undirected Graph - Example

Graph Traversals | 55

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)
Current vertex: L
Edges to consider: to G,H,P

DFS in an Undirected Graph - Example

Graph Traversals | 56

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)
Current vertex: L
Edges to consider: to H,P

DFS in an Undirected Graph - Example

Graph Traversals | 57

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

Current vertex: H
Edges to consider: to D,L

DFS in an Undirected Graph - Example

Graph Traversals | 58

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

Current vertex: H
Edges to consider: to L

DFS in an Undirected Graph - Example

Graph Traversals | 59

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

Finished H, backtrack to L

DFS in an Undirected Graph - Example

Graph Traversals | 60

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: L
Edges to consider: to P

DFS in an Undirected Graph - Example

Graph Traversals | 61

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: P
Edges to consider: to L

DFS in an Undirected Graph - Example

Graph Traversals | 62

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)
J (G,J)
I (J,I)
E (I, E)
F (E, F)
M (I,M)
N (M,N)
K (N,K)
O (K, O)
L (G,L)
H (L, H)
P (L, P)

Finished P, backtracking to L

DFS in an Undirected Graph - Example

Graph Traversals | 63

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: L
Edges to consider: -
Finished L, backtr. to G

DFS in an Undirected Graph - Example

Graph Traversals | 64

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: G
Edges to consider: -
Finished G, backtr. to D

DFS in an Undirected Graph - Example

Graph Traversals | 65

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: D
Edges to consider: H

DFS in an Undirected Graph - Example

Graph Traversals | 66

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: D
Edges to consider: -
Finished D, backtr. to C

DFS in an Undirected Graph - Example

Graph Traversals | 67

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: C
Edges to consider: G

DFS in an Undirected Graph - Example

Graph Traversals | 68

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: C
Edges to consider: -
Finished C, backtr. to B

DFS in an Undirected Graph - Example

Graph Traversals | 69

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: B
Edges to consider: F

DFS in an Undirected Graph - Example

Graph Traversals | 70

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: B
Edges to consider: -
Finished B, backtr. to A

DFS in an Undirected Graph - Example

Graph Traversals | 71

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: A
Edges to consider: E, F

DFS in an Undirected Graph - Example

Graph Traversals | 72

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: A
Edges to consider: F

DFS in an Undirected Graph - Example

Graph Traversals | 73

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

C (B,C)

D (C, D)

G (D,G)

J (G,J)

I (J,I)

E (I, E)

F (E, F)

M (I,M)

N (M,N)

K (N,K)

O (K, O)

L (G,L)

H (L, H)

P (L, P)

Current vertex: A
Edges to consider: -
Finished A, stop.

DFS in an Undirected Graph - Example

Graph Traversals | 74

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)
J (G,J)
I (J,I)
E (I, E)
F (E, F)
M (I,M)
N (M,N)
K (N,K)
O (K, O)
L (G,L)
H (L, H)
P (L, P)

DFS has visited all the vertices of !.
The spanning tree of !, build only from discovery edges,
is marked in red. The remaining edges are back edges.

Properties of a DFS

• Proposition. Let ! be an undirected graph for which a DFS traversal starting at vertex "
has been performed. Then

- the traversal visits all vertices in the connected component of ", and

- the discovery edges form a spanning tree of the connected component of ".
• Justification. Suppose that the vertex # from "’s connected component is not visited. Let

$ be the first unvisited vertex on a path from " to # ($ = # is also possible).

- $ is the first unvisited vertex on the path → it has a neighbor (which was visited

- But when (was visited, edge ((, $) must have been considered

- Hence $ cannot be unvisited – contradiction.

- A discovery edge is followed only when moving to an unvisited vertex → no cycles are

possible → discovery edges form a tree (connected subgraph without cycles)

- This is a spanning tree because DFS visits all the vertices from the connected

component of "
Graph Traversals | 75

Depth-First Search – Python Implementation

Graph Traversals | 76

Running Time of DFS

• Depth-first search is an efficient method for traversing a tree

• DFS is called at most once for each vertex (because the vertex is marked as visited)

• For an undirected graph, each edge (", $) is examined at most twice – once from " and
once from $

• If &' ≤ & is the number of vertices reachable from the start vertex) and *' ≤ * is the
number of edges incident to those vertices then DFS runs in +(&' + *') time if

- The data structure used to represent the graph can iterate though the edges of a
vertex, incident_edges(v) in +(deg $) time, and can find the opposite vertex,
e.opposite(v) in +(1) time

- There is a method to mark the vertex or edge as explored, and to test if a vertex or
edge has been explored in +(1) time

Graph Traversals | 77

Problems Solved using a DFS traversal in an Undirected Graph

a. Computing a path between two given vertices of !, if one exists.

b. Testing whether ! is connected.

c. Computing the connected components of !.

d. Computing a cycle in !, or report that ! has no cycles.

Graph Traversals | 78

a. Compute a Path from ! to "

• The DFS procedure was already performed for the graph #
• To reconstruct the path from $ to %, start at the end of the path

• Look in the discovered dictionary for the edge that was used to discover %, and retrieve
its other endpoint &

• Add add the endpoint & to a list, look again in the dictionary for the edge used to discover
& and obtain its other endpoint.

• Continue until $ is reached, then reverse the list and return it

Graph Traversals | 79

a. Compute a Path from ! to " – Python implementation

Graph Traversals | 80

a. Compute a Path from ! to " – Running Time

Graph Traversals | 81

• Function runs in time proportional to the length of the path, therefore ?

a. Compute a Path from ! to " – Running Time

Graph Traversals | 82

• Function runs in time proportional to the length of the path, therefore #(%) + the time needed
to perform DFS (which gives us discovered)

b. Test whether ! is connected

• The DFS procedure was already performed for the graph ", starting from an arbitrary
vertex #

• Test if the discovered dictionary contains $ entries ($ is the number of vertices in ")
- If yes, then " is connected, and all its vertices have been visited
- If not, then " is not connected, and there is at least a vertex & that cannot be reached

from any of the vertices in the connected component of #

Graph Traversals | 83

b. Test whether ! is connected - Runtime

• Runtime: only the time needed to perform the DFS - "($ + &), since querying for the
length of discovered is "(1)

Graph Traversals | 84

c. Compute the connected components of !

• If an undirected graph is not connected, identify all of its the connected components

• If the initial DFS traversal has not reached all the vertices of a graph "
- Start another DFS traversal from one of the vertices that are still not visited
- Visit all vertices that are reachable from the new start vertex
- Continue performing new DFS searches until all the vertices of " have been visited

Graph Traversals | 85

Forest

c. Compute the connected components of ! – Python implementation

Graph Traversals | 86

• The number of connected components of " can be obtained by counting the number of vertices
with a None edge in forest - these are the root vertices of each of the connected components

c. Compute the connected components of ! – Runtime

Graph Traversals | 87

• Although there are multiple calls to DFS, the total running time of DFS complete is "($ + &),
because there are $ vertices and & edges in total in the graph (, which is not connected

• Each connected component takes "($)* + &)*) time
• Each DFS call from DFS_complete explores a different component, "($)+ + &)+)
• The sum is "($ + &)

d. Compute a cycle in !

• The DFS procedure was already performed for the graph "
• A cycle exists if and only if a back edge exists with respect to the DFS traversal of that

graph

• To obtain the cycle, take the back edge from the descendant to the ancestor and then
follow DFS tree edges back to the descendant

Graph Traversals | 88

Breadth-First Search

Graph Traversals | 89

Breadth-First Search (BFS) - Intuition

• Depth-first search – imagine a traversal done by a
single person exploring a graph

• Breath-first search – imagine sending out, in all
directions, many persons that traverse the graph in
a collaborative way

• BFS works in rounds and subdivides the vertices
into levels

• It starts at vertex !, which is at level 0

Graph Traversals | 90

CB

A

E

D

F

CB

A

E

D

L0

L1

F
L2

Breadth-First Search (BFS) - Algorithm

• Start at vertex !, which is at level 0; ! is marked as
visited

• In the first round all the vertices that are adjacent to
! are marked as visited – these vertices, which are
one step away from !, are placed on level 1

• In the second round all the vertices that are
adjacent to any of the vertices on level 1 are
marked as visited; these vertices are two steps
away from ! and are placed on level 2

• The process continues until no new vertices are
found in a level

Graph Traversals | 91

CB

A

E

D

F

CB

A

E

D

L0

L1

F
L2

Breadth-First Search (BFS) – Python implementation

Graph Traversals | 92

Breadth-First Search (BFS) – Example

Graph Traversals | 93

A B C D

E

I

M

F G H

J K L

N O P

• Start from vertex A, which is marked as visited (red)

visited discovery
edge

A None

Current level: A
Edges to consider: to B, E, F

Level 0

Breadth-First Search (BFS) – Example

Graph Traversals | 94

A B C D

E

I

M

F G H

J K L

N O P

• Mark edges to non-visited vertices with red

visited discovery
edge

A None

B (A,B)

E (A,E)

F (A,F)

Current level: A
Edges to consider: to B, E, F

Level 0

Breadth-First Search (BFS) – Example

Graph Traversals | 95

A B C D

E

I

M

F G H

J K L

N O P

• Mark edges to non-visited vertices with red
• Mark edges to visited vertices with green (dotted)

visited discovery
edge

A None

B (A,B)

E (A,E)

F (A,F)

C (B,C)

I (E,I)

Current level: B, E, F
Edges to consider: (B,A),
(B,C), (B,F), (E,A), (E,F),
(E,I), (F,A), (F,B), (F,E), (F,I)

Level 0 1

Breadth-First Search (BFS) – Example

Graph Traversals | 96

A B C D

E

I

M

F G H

J K L

N O P

• Mark edges to non-visited vertices with red
• Mark edges to visited vertices with green (dotted)

visited discovery
edge

A None

B (A,B)

E (A,E)

F (A,F)

C (B,C)

I (E,I)

D (C,D)

G (C,G)

J (I,J)

M (I,M)

N (I,N)
Current level: C, I
Edges to consider: (C,B), (C,D),
(C,G), (I,E), (I,F), (I,J), (I,M), (I,N)

Level 0 1 2

Breadth-First Search (BFS) – Example

Graph Traversals | 97

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

E (A,E)

F (A,F)

C (B,C)

I (E,I)

D (C,D)

G (C,G)

J (I,J)

M (I,M)

N (I,N)

H (D,H)

K (G,K)

L (G,L)
Current level: D, G, J, M, N
Edges to consider: (D,C), (D,G),
(D,H), (G, C), (G,D), (G,J), (G,K),
(G,L), (J,G), (J,I), (J,K), (M,I),
(M,N), (N,I), (N,K), (N,M)

Level 0 1 2 3

Breadth-First Search (BFS) – Example

Graph Traversals | 98

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None

B (A,B)

E (A,E)

F (A,F)

C (B,C)

I (E,I)

D (C,D)

G (C,G)

J (I,J)

M (I,M)

N (I,N)

H (D,H)

K (G,K)

L (G,L)

O (K,O)

P (L,P)

Current level: H, K, L
Edges to consider: (H,D), (H,L),
(K,G), (K,J), (K,N), (K,O), (L,G),
(L,H), (L,P)

Level 0 1 2 3

4

Breadth-First Search (BFS) – Example

Graph Traversals | 99

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None
B (A,B)
E (A,E)
F (A,F)
C (B,C)
I (E,I)
D (C,D)
G (C,G)
J (I,J)
M (I,M)
N (I,N)
H (D,H)
K (G,K)
L (G,L)
O (K,O)
P (L,P)

Current level: O, P
Edges to consider: (O, K), (P, L)
No new nodes, stop.

Level 0 1 2 3

4

5

Breadth-First Search (BFS) – Example

Graph Traversals | 100

A B C D

E

I

M

F G H

J K L

N O P

visited discovery
edge

A None
B (A,B)
E (A,E)
F (A,F)
C (B,C)
I (E,I)
D (C,D)
G (C,G)
J (I,J)
M (I,M)
N (I,N)
H (D,H)
K (G,K)
L (G,L)
O (K,O)
P (L,P)

• Edges of BFS traversal tree (starting from A)
marked in red (discovery edges)

Breadth-First Search (BFS) - Properties

• Proposition. A path !" in a breadth-first search rooted at vertex # to any other vertex $ is
guaranteed to be the shortest such path from # to $ in terms of the number of edges.

• Justification. Suppose that there was another path, !% from # to $ that was shorter than !"
- This means that !% is at least one edge shorter than !"
- This means that $ was already discovered on the previous level by !%
- But !" is also a path in the BFS tree – so $ appears on two levels – contradiction,

because the levels are made of disjoint nodes, marked as visited on their first visit

Graph Traversals | 101

Breadth-First Search (BFS) – Properties (cont’d)

• Consider !, an undirected graph on which a BFS traversal starting at vertex " has been
performed. Then:

- The traversal visits all vertices of ! that are reachable from "
- For each vertex at level #, the path of the BFS tree between " and $ has # edges, and

any other path of ! from " to $ has at least # edges
- If (&, $) is an edge that is not in the BFS tree then the level number of $ can be at most

1 greater than the level number of &

• Exercise: try to justify each of these properties using contradiction or induction.

Graph Traversals | 102

Breadth-First Search (BFS) – Running time

• For a graph ! with " vertices and # nodes represented using an adjacency list structure
a BFS traversal takes $(" + #) time if the graph is connected if 1 and 2 are satisfied

• As in the DFS case, if "(≤ " is the number of vertices reachable from *, and #(≤ # is
the number of edges incident to those vertices, then BFS runs in $("(+ #() time if

1. The data structure used to represent the graph can iterate though the edges of a
vertex, incident_edges(v) in $(deg .) time, and can find the opposite vertex,
e.opposite(v) in $(1) time

2. There is a method to mark the vertex or edge as explored, and to test if a vertex or
edge has been explored in $(1) time

• A procedure similar to the DFS_complete() function can be used to explore the entire
graph in cases where the graph is made of multiple connected components

Graph Traversals | 103

BFS vs. DFS

Graph Traversals | 104

Undirected Graph Applications DFS BFS
Find a set of vertices that are reachable from a given source,
and determine paths to those vertices Ö Ö

Shortest paths Ö

Test the connectivity of a graph Ö Ö

Identify connected components Ö Ö

Locate a cycle Ö Ö

Thank you.

