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Graph Traversals

« Formally, a traversal is a systematic procedure for exploring a graph by examining all of
its vertices and edges

 Atraversal is efficient if it visits all the vertices and edges in time proportional to their
number — i.e. in linear time

« Graph traversal algorithms can answer many questions involving reachability in an
undirected graph G:
- Compute a path from a vertex u to a vertex v, or report that such a path does not exist

- Given a start vertex s from G, compute, for every vertex v of G, a path with minimum
number of edges between s and v, or report that no such path exists

- Test whether G is a connected graph
- Compute a spanning tree of G, if G is connected
- Compute the connected components of G

- Compute a cycle in G, or report that ¢ has no cycles

U%\éFNRéIgIQIAT Graph Traversals | 3



Depth-First Search
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Depth-First Search: Intuition

 Imagine wandering through a labyrinth with a string and a can of paint without
getting lost; each intersection is a vertex

« We begin with a specific starting vertex s of ¢, and initialize it by tying the string and
paining s as visited — s is now our current vertex, call it u

» Traverse G by considering an arbitrary edge (u, v) incident to the current vertex u I_ |_ _‘
- If (u, v) leads to a visited vertex v (v is painted), then ignore edge

- If (u, v) leads to an unvisited vertex v, then unroll the string, go to v, paint v as _I ‘ I_ |_
visited, make it the current vertex, and continue the process with the edges
incident to v

« Wil eventually hit a dead end: a current vertex v where all the incident edges lead to visited vertices;
then roll string back up, backtrack to the edge that brought us to v — go back to u, and continue with

visiting u
« Finish when backtracking leads back to s and there are no more edges of s to explore

RRRRRRRRRRRRR
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Depth-First Search - Edges

» The DFS traversal identifies the depth-first search tree rooted at the starting vertex s

* Whenever an edge e = (u, v) is used to discover a new vertex during the execution of
DFS, the edge is known as a discovery edge or a tree edge

« All other edges from the DFS traversal are called nontree edges, which lead to already
visited vertices

* In an undirected graph explored nontree edges connect the current vertex to one of its
ancestors in the DFS tree — they are called back edges.
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Depth-First Search - Algorithm

Algorithm DFS(G,u): {We assume u has already been marked as visited}
Input: A graph G and a vertex u of G
Output: A collection of vertices reachable from u, with their discovery edges

for each outgoing edge e = (u,v) of u do
if vertex v has not been visited then

Mark vertex v as visited (via edge e).
Recursively call DFS(G,v).
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DFS in an Undirected Graph - Example

visited discovery

edge

@ @ A None

™
®
0
()

@ e o6
©® 06
® 06

Current vertex: A
Edges to consider: to B, E, F
« Start from vertex A, which is marked as visited (red)
* Assume that the edges adjacent to a vertex are considered in
alphabetical order — e.g. forA: B, E, F

RRRRRRRRRRRRR
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DFS in an Undirected Graph - Example
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Consider the edge that leads to B
« B s not visited — mark B as visited
* Mark (A,B) as a discovery edge
« Make B the current vertex

visited discovery
edge
A None
B (A,B)

Current vertex: A
Edges to consider: to E, F
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DFS in an Undirected Graph - Example
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visited discovery
edge
A None
B (A,B)

Current vertex: B
Edges to consider: to A, C, F
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DFS in an Undirected Graph - Example

visited discovery

edge

A None
B (A,B)
C (B,C)

® 006
@06
©® 06
® 066

Current vertex: B
Edges to consider: to C, F
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DFS in an Undirected Graph - Example
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visited discovery
edge
A None
B (A,B)
C (B,C)

Current vertex: C
Edges to consider: to B, D, G
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DFS in an Undirected Graph - Example

visited discovery

edge

A None
B (A,B)
C (B,C)
D (C, D)

® 006
@ e e

©® 06
® 06

Current vertex: C
Edges to consider: to D, G
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DFS in an Undirected Graph - Example
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visited discovery
edge
A None
B (A,B)
C (B,C)
D (C, D)

Current vertex: D
Edges to consider: to C, G, H
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DFS in an Undirected Graph - Example

visited discovery

edge

A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)

® 006
@ e o6
©® e e
® 0 6e

Current vertex: D
Edges to consider: to G, H
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DFS in an Undirected Graph - Example
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visited discovery
edge
A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)

Current vertex: G
Edges to consider: to C, D, J, K, L
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DFS in an Undirected Graph - Example
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visited discovery
edge
A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)

Current vertex: G
Edges to consider: to D, J, K, L
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DFS in an Undirected Graph - Example

visited discovery

edge

©eO 006 s e
OROEORD °© o
DEOEORD L e
UEOROND

Current vertex: G
Edges to consider: to J, K, L
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DFS in an Undirected Graph - Example
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visited discovery

edge
A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)
J (G,J)

Current vertex: J
Edges to consider: to G, |, K
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DFS in an Undirected Graph - Example
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visited discovery

edge
A None
B (A,B)
C (B,C)
D (C, D)
G (D,G)
J (G,J)
I

(J.1)

Current vertex: J
Edges to consider: to |, K
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DFS in an Undirected Graph - Example

visited discovery

edge

©e 00 W
g@@@ S
ORONS D
DNORONO —

Current vertex: |
Edges to consider: to E,F,J,M,N
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DFS in an Undirected Graph - Example
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visited discovery

edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)

m — « @O OO 0 >»

Current vertex: E
Edges to consider: to A, F, |
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

M m — « O OO0 W >»

Current vertex: E
Edges to consider: to F, |
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

M m — « O OO0 W >»

Current vertex: F
Edges to consider: to A, B, E, |
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

M m — « O OO0 W >»

Current vertex: F
Edges to consider: to B, E, |
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

M m — « O OO0 W >»

Current vertex: F
Edges to consider: to E, |
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DFS in an Undirected Graph - Example
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visited discovery

edge

(C,D

(J.1)
(I, E)

M m — « O OO0 W >»

None
(A,B)
(B,C)

)

(D.G)
(G.J)

(E, F)

Current vertex: F
Edges to consider: to |
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DFS in an Undirected Graph - Example

visited discovery

edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

® 0006
® ©

© e e
® 066

M m — « O OO0 W >»

Finished F (gray), backtracking to E



DFS in an Undirected Graph - Example

visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

‘e

M m — « O OO0 W >»

® O
® ©
© e e
® 066

Current vertex: E
Edges to consider: to |
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DFS in an Undirected Graph - Example

visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

|
mMm—« @ OO0 m >

Finished E, backtracking to |
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DFS in an Undirected Graph - Example

visited discovery

edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

& © @
ORO

ORO
ORO

M m — « O OO0 W >»

Current vertex: |
Edges to consider: to F,J,M,N
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DFS in an Undirected Graph - Example

visited discovery

edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)

& © @
ORO

ORO
ORO

M m — « O OO0 W >»

Current vertex: |
Edges to consider: to J,M,N
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DFS in an Undirected Graph - Example

visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)

(I, E)
(E, F)
(1LM)

@ e © @
ORO
OSOR0
ORORO

M m — « O OO0 W >»

<

Current vertex: |
Edges to consider: to M,N
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DFS in an Undirected Graph - Example

visited discovery

edge
None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)

(I, E)
(E, F)
(1LM)

M m — « O OO0 W >»

® @
® 0

Current vertex: M
Edges to consider: to I, N

RRRRRRRRRRRRR
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DFS in an Undirected Graph - Example

@ e © @
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)

< M m—-— « @ OO W >

Z

Current vertex: M
Edges to consider: to N
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DFS in an Undirected Graph - Example

@ e © @

ORO
OO WO
ORORORG
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)

< M m—-— « @ OO W >

Z

Current vertex: N
Edges to consider: to |, K, M
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DFS in an Undirected Graph - Example

@ e © @
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)

Z < mMmm — « OO OO W >»r

A

Current vertex: N
Edges to consider: to K, M
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DFS in an Undirected Graph - Example

@ e © @

ORO
OO OO
ORORORG

UNIVERSITAT
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)

Z < mMmm — « OO OO W >»r

A

Current vertex: K
Edges to consider: to G, J, N, O
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DFS in an Undirected Graph - Example

@ e © @

ORO
OO WO
ORORORG

UNIVERSITAT
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)

Z < mMmm — « OO OO W >»r

A

Current vertex: K
Edges to consider: to J, N, O
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DFS in an Undirected Graph - Example

@ e © @

ORO
OO WO
ORORORG

UNIVERSITAT
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visited discovery
edge

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)

Z < mMmm — « OO OO W >»r

A

Current vertex: K
Edges to consider: to N, O
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visited discovery

DFS in an Undirected Graph - Example
(A,B)
(B,C)
(C, D)
(D.G)
(GJ)
(J.1)
(I, E)
(E, F)
(1,M)
(M,N)
(N.K)
(K, O)

@ e © @

ORO
O @ ®© O
ORORORG

X Z2 < 1T m - « @ OO w >»

O

Current vertex: K
Edges to consider: to O

RRRRRRRRRRRRR
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visited discovery

edge

DFS in an Undirected Graph - Example

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)
(K, O)

& © @
ORO

L
®

X Z2 < 1T m - « @ OO w >»

)
ORORO
ORORO

O

Current vertex: O
Edges to consider: to K

RRRRRRRRRRRRR
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visited discovery

edge

DFS in an Undirected Graph - Example

None
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(1LM)
(M,N)
(N,K)
(K, O)

Finished O, backtracking to K

@ e © @
ORO
ORORO
ORO

X Z2 < 1T m - « @ OO w >»

L
®

O

RRRRRRRRRRRRR
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

& © @
ORO
I@

®

X Z2 < 1T m - « @ OO w >»

ORO
0RO
ORO

O

Current vertex: K
Edges to consider: -
EEEEEEEEEEEEEE Finished K, backtracking to N
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visited discovery

DFS in an Undirected Graph - Example
(A,B)
(B,C)
(C, D)
(D.G)
(GJ)
(J.1)
(I, E)
(E, F)
(1,M)
(M,N)
(N.K)
(K, O)

@ e © @

ORO
OO v O
() ®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: N
Edges to consider: M

EEEEEEEEEEEEEE
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

@ e © @
ORO
OO v O

() 1 (®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: N
Edges to consider: -
EEEEEEEEEEEEEE Finished N, backtracking to M
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

@ e © @
ORO
OO O
. ®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: M
Edges to consider: -
EEEEEEEEEEEEEE Finished M, backtracking to |
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visited discovery

DFS in an Undirected Graph - Example
(A,B)
(B,C)
(C, D)
(D.G)
(GJ)
(J.1)
(I, E)
(E, F)
(1,M)
(M,N)
(N.K)
(K, O)

@ e © @
ORO

000 e

(®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: |
Edges to consider: N

EEEEEEEEEEEEEE
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

@ e © @
ORO
OSOR0
®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: |
Edges to consider: -
EEEEEEEEEEEEEE Finished I, backtracking to J
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visited discovery

DFS in an Undirected Graph - Example
(A,B)
(B,C)
(C, D)
(D.G)
(GJ)
(J.1)
(I, E)
(E, F)
(1,M)
(M,N)
(N.K)
(K, O)

@ e © @
ORO
@ 0 O
®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: J
Edges to consider: to K

EEEEEEEEEEEEEE
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

@ e © @
ORO

- L
®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: J
Edges to consider: -
EEEEEEEEEEEEEE Finished J, backtracking to G
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visited discovery

DFS in an Undirected Graph - Example
(A,B)
(B,C)
(C, D)
(D.G)
(GJ)
(J.1)
(I, E)
(E, F)
(1,M)
(M,N)
(N.K)
(K, O)

@ e © @
O
ﬁ@

(®

X Z2 < 1T m - « @ OO w >»

O

Current vertex: G
Edges to consider: to K, L

EEEEEEEEEEEEEE

U%\g\éFNRéI&AT Graph Traversals | 53



visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E, F)
(I,M)
(M.N)
(N.K)
(K, O)

L (G,L)
Current vertex: G
EEEEEEEEEEEEEE Edges to consider: to L

TUBINGEN Graph Traversals | 54
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visited discovery

DFS in an Undirected Graph - Example
(A.B)
(B.C)
(C, D)
(D,G)
(G.J)
(J.1)
(I, E)
(E. F)
(LM)
(M.N)
(N.K)
(K, O)

L (G,L)
Current vertex: L
EEEEEEEEEEEEEE Edges to consider: to G,H,P
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visited discovery
edge

DFS in an Undirected Graph - Example Noe
(A,B)
(B,C)
(C, D)
(D,G)
(G,J)
(J,1)
(I, E)
(E, F)
(I,M)
(M,N)
(N,K)
(K, O)
(G,L)
H (L, H)

“Current vertex: L

Edges to consider: to H,P
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visited discovery
edge

DFS in an Undirected Graph - Example Noe
(A,B)
(B,C)
(C, D)
(D,G)
(G,J)
(J,1)
(I, E)
(E, F)
(I,M)
(M,N)
(N,K)
(K, O)
(G,L)
H (L, H)

Current vertex: H
EEEEEEEEEEEEEE Edges to consider: to D,L

U%\g\éFNRéI&AT Graph Traversals | 57

W e © @
ORO

0

®

r O xX Zz< 1T1Tm— « O o m >»




visited discovery
edge

DFS in an Undirected Graph - Example Noe
(A,B)
(B,C)
(C, D)
(D,G)
(G,J)
(J,1)
(I, E)
(E, F)
(I,M)
(M,N)
(N,K)
(K, O)
(G,L)
H (L, H)

Current vertex: H
EEEEEEEEEEEEEE Edges to consider: to L
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visited discovery
edge

DFS in an Undirected Graph - Example Noe
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(J.1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
H (L, H)

Finished H, backtrack to L

W e © @
(®

0

®

r O xX Zz< 1T1Tm— « O o m >»
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: L
EEEEEEEEEEEEEEE Edges to consider: to P
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: P
EEEEEEEEEEEEEEE Edges to consider: to L
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DFS in an Undirected Graph - Example
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G.J)
(1)
(I, E)
(E, F)
(IL,M)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)
Finished P, backtracking to L

DFS in an Undirected Graph - Example

@ e © @
(®
L

I r O xX Z2< 11Tm—« O OO o >
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: L
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT

TUBINGEN Finished L, backtr. to G ©°h Traversals |63

DFS in an Undirected Graph - Example
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: G
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT

TUBINGEN Finished G, backtr. to D €°h Traversals |64

DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: D
EEEEEEEEEEEEEEE Edges to consider: H
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: D
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT

TUBINGEN Finished D, backtr. to C ©°h Traversals |66

DFS in an Undirected Graph - Example
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: C
EEEEEEEEEEEEEEE Edges to consider: G
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: C
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT

TUBINGEN Finished C, backtr. to B ©°" Traversals |68

DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: B
EEEEEEEEEEEEEEE Edges to consider: F
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: B
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: A
EEEEEEEEEEEEEEE Edges to consider: E, F
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: A
EEEEEEEEEEEEEEE Edges to consider: F
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DFS in an Undirected Graph - Example
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visited discovery

edge
None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
P (L, P)

Current vertex: A
EEEEEEEEEEEEEEE Edges to consider: -

UNIVERSITAT
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DFS in an Undirected Graph - Example
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visited discovery

edge

None
(A.B)
(B,C)
(C, D)
(D,G)
(G,J)
(1)
(I, E)
(E, F)
(LM)
(M,N)
(N,K)
(K, O)
(G,L)
(L, H)
(L, P)

DFS in an Undirected Graph - Example

g
POV IRN
]

DFS has visited all the vertices of G.
The spanning tree of G, build only from discovery edges,
is marked in red. The remaining edges are back edges.

T I rnOxXx Z<Z mM1m—«® o w >»
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Properties of a DFS

» Proposition. Let ¢ be an undirected graph for which a DFS traversal starting at vertex s
has been performed. Then
- the traversal visits all vertices in the connected component of s, and
- the discovery edges form a spanning tree of the connected component of s.
« Justification. Suppose that the vertex w from s’s connected component is not visited. Let
v be the first unvisited vertex on a path from s to w (v = w is also possible).
- v is the first unvisited vertex on the path — it has a neighbor u which was visited
- But when u was visited, edge (u, v) must have been considered
- Hence v cannot be unvisited — contradiction.

- A discovery edge is followed only when moving to an unvisited vertex — no cycles are
possible — discovery edges form a tree (connected subgraph without cycles)

- This is a spanning tree because DFS visits all the vertices from the connected
component of s
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Depth-First Search — Python Implementation

1 def DFS(g, u, discovered):

2 """Perform DFS of the undiscovered portion of Graph g starting at Vertex u.
3

4  discovered is a dictionary mapping each vertex to the edge that was used to
5  discover it during the DFS. (u should be "discovered™” prior to the call.)

6  Newly discovered vertices will be added to the dictionary as a result.

7 mnmmnn

8  for e in g.incident_edges(u): # for every outgoing edge from u

9 v = e.opposite(u)
10 if v not in discovered: # v is an unvisited vertex
11 discovered|[v] = e # e is the tree edge that discovered v
12 DFS(g, v, discovered) # recursively explore from v

result = {u : None} # a new dictionary, with u trivially discovered

DFS(g, u, result)

RRRRRRRRRRRR
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Running Time of DFS

» Depth-first search is an efficient method for traversing a tree
* DFS is called at most once for each vertex (because the vertex is marked as visited)

* For an undirected graph, each edge (u, v) is examined at most twice — once from u and
once from v

* If ngy < n is the number of vertices reachable from the start vertex s and m; < m is the
number of edges incident to those vertices then DFS runs in 0(ng + m;) time if

- The data structure used to represent the graph can iterate though the edges of a
vertex, incident_edges(v) in 0(deg(v)) time, and can find the opposite vertex,
e.opposite(v) in 0(1) time

- There is a method to mark the vertex or edge as explored, and to test if a vertex or
edge has been explored in 0(1) time

RRRRRRRRRRRRR
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Problems Solved using a DFS traversal in an Undirected Graph

a. Computing a path between two given vertices of G, if one exists.
b. Testing whether ¢ is connected.

Computing the connected components of G.

O

Q-

Computing a cycle in G, or report that G has no cycles.

RRRRRRRRRRRRR
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a. Compute a Path from u to v

» The DFS procedure was already performed for the graph G
 To reconstruct the path from u to v, start at the end of the path

* Look in the discovered dictionary for the edge that was used to discover v, and retrieve
its other endpoint w

« Add add the endpoint w to a list, look again in the dictionary for the edge used to discover
w and obtain its other endpoint.

« Continue until u is reached, then reverse the list and return it

RRRRRRRRRRRRR
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a. Compute a Path from u to v — Python implementation

| def construct_path(u, v, discovered):

2 path =[] # empty path by default

3 if v in discovered:

4 # we build list from v to u and then reverse it at the end

5 path.append(v)

6 walk = v

7 while walk is not u:

8 e = discovered|walk] # find edge leading to walk
9 parent = e.opposite(walk)
10 path.append(parent)
I1 walk = parent
12 path.reverse( ) # reorient path from u to v

13 return path

RRRRRRRRRRRR
UNIVERSITAT ¢
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a. Compute a Path from u to v — Running Time

I
2
3

10
[1
12
13

def construct_path(u, v, discovered):
path = [ ] # empty path by default
if v in discovered:
# we build list from v to u and then reverse it at the end
path.append(v)

walk = v
while walk is not u:
e = discovered|walk] # find edge leading to walk

parent = e.opposite(walk)
path.append(parent)
walk = parent
path.reverse( ) # reorient path from u to v
return path

* Function runs in time proportional to the length of the path, therefore ?

RRRRRRRRRRRR
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a. Compute a Path from u to v — Running Time

def construct_path(u, v, discovered):

I

2 path =[] # empty path by default

3 if v in discovered:

4 # we build list from v to u and then reverse it at the end

5 path.append(v)

6 walk = v

7 while walk is not u:

8 e = discovered|walk] # find edge leading to walk
9 parent = e.opposite(walk)
10 path.append(parent)
[ walk = parent
12 path.reverse( ) # reorient path from u to v

13 return path

* Function runs in time proportional to the length of the path, therefore 0 (n) + the time needed
to perform DFS (which gives us discovered)

UNIVERSITAT &
TUBINGEN %
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b. Test whether G is connected

« The DFS procedure was already performed for the graph G, starting from an arbitrary
vertex s

« Test if the discovered dictionary contains n entries (n is the number of vertices in G)

- If yes, then G is connected, and all its vertices have been visited

- If not, then G is not connected, and there is at least a vertex v that cannot be reached
from any of the vertices in the connected component of s

RRRRRRRRRRRRR
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b. Test whether G is connected - Runtime

* Runtime: only the time needed to perform the DFS - O(n + m), since querying for the
length of discoveredis 0(1)

RRRRRRRRRRRRR
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c. Compute the connected components of G

« If an undirected graph is not connected, identify all of its the connected components
« If the initial DFS traversal has not reached all the vertices of a graph G

- Start another DFS traversal from one of the vertices that are still not visited
- Visit all vertices that are reachable from the new start vertex
- Continue performing new DFS searches until all the vertices of G have been visited

° o %

Forest

RRRRRRRRRRRRR
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c. Compute the connected components of ¢ — Python implementation
def DFS_complete(g):
""" Perform DFS for entire graph and return forest as a dictionary.

I
2
3
4 Result maps each vertex v to the edge that was used to discover it.
5  (Vertices that are roots of a DFS tree are mapped to None.)

6

7 forest = { }

8§  for u in g.vertices():

9 if u not in forest:

10 forestu] = None # u will be the root of a tree

[ 1 DFS(g, u, forest)
12 return forest

« The number of connected components of ¢ can be obtained by counting the number of vertices
with a None edge in forest - these are the root vertices of each of the connected components

RRRRRRRRRRRR
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c. Compute the connected components of G — Runtime

def DFS_complete(g):

""" Perform DFS for entire graph and return forest as a dictionary.

|

9

'%

4 Result maps each vertex v to the edge that was used to discover it.
5 (Vertices that are roots of a DFS tree are mapped to None.)

7 forest = { }

8§  for u in g.vertices():

9 if u not in forest:

10 forest[u] = None # u will be the root of a tree
[ 1 DFS(g, u, forest)

2 return forest

« Although there are multiple calls to DFS, the total running time of DFS complete is O(n + m),
because there are n vertices and m edges in total in the graph G, which is not connected
« Each connected component takes 0(ny; + my;) time
« Each DFS call from DFS_complete explores a different component, 0(ng; + mg;)
* Thesumis O(n +m)

UNIVERSITAT &
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d. Compute a cycle in G

» The DFS procedure was already performed for the graph G

« A cycle exists if and only if a back edge exists with respect to the DFS traversal of that
graph

 To obtain the cycle, take the back edge from the descendant to the ancestor and then
follow DFS tree edges back to the descendant

RRRRRRRRRRRRR »
U%\éFNRéIETST Graph Traversals | 88



Breadth-First Search
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Breadth-First Search (BFS) - Intuition

» Depth-first search — imagine a traversal done by a Q
single person exploring a graph

 Breath-first search — imagine sending out, in all
directions, many persons that traverse the graph in

a collaborative way G G

« BFS works in rounds and subdivides the vertices
into levels

* |t starts at vertex s, which is at level O

RRRRRRRRRRRR
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Breadth-First Search (BFS) - Algorithm

- Start at vertex s, which is at level 0: s is marked as (A)
visited

* In the first round all the vertices that are adjacent to
s are marked as visited — these vertices, which are
one step away from s, are placed on level 1 G G

* In the second round all the vertices that are
adjacent to any of the vertices on level 1 are
marked as visited; these vertices are two steps
away from s and are placed on level 2

* The process continues until no new vertices are
found in a level

RRRRRRRRRRRR » R
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Breadth-First Search (BFS) — Python implementation

RRRRRRRRRRRR
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1
2
3
4
5
6
7
8

9
10

12
13
14
15
16
17

def BFS(g, s, discovered):

Perform BFS of the undiscovered portion of Graph g starting at Vertex s.

discovered is a dictionary mapping each vertex to the edge that was used to
discover it during the BFS (s should be mapped to None prior to the call).
Newly discovered vertices will be added to the dictionary as a result.

level = [s] # first level includes only s
while len(level) > 0:
next_level = [ | # prepare to gather newly found vertices

for u in level:
for e in g.incident_edges(u): # for every outgoing edge from u
v = e.opposite(u)

if v not in discovered: # v is an unvisited vertex
discovered|v] = e # e is the tree edge that discovered v
next_level.append(v) # v will be further considered in next pass
level = next_level # relabel 'next’ level to become current
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Breadth-First Search (BFS) — Example

Level

visited discovery

edge

@@ A None

® 0@
@06
©® 06
® 06

Current level: A
Edges to consider: to B, E, F

« Start from vertex A, which is marked as visited (red)

RRRRRRRRRRRRR
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Breadth-First Search (BFS) — Example

Level 0 visited discovery

@e 0 e

edge

A None
B (A,B)
E (AE)
F (A,F)

® Q0@
@ eC
©® 06
® 06

Current level: A
Edges to consider: to B, E, F

« Mark edges to non-visited vertices with red

RRRRRRRRRRRRR
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Breadth-First Search (BFS) — Example

Level 0 1 visited discovery

edge

None
(A.B)
(A.E)
(A,F)
(B.C)
(E.))

— O mm @ >

Current level: B, E, F
Edges to consider: (B,A),
(B,C), (B,F), (E,A), (E,F),

« Mark edges to non-visited vertices with red (E,1), (F,A), (F,B), (F,E), (FI)
« Mark edges to visited vertices with green (dotted)

RRRRRRRRRRRRR
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visited discovery

edge

Breadth-First Search (BFS) — Example

None
(A,B)
AE)
AF)
B,C)
(E.1)
(C.D)
(C,G)
(1,J)
(ILM)
N (I,N)

Current level: C, |
Edges to consider: (C,B), (C,D),
(C,G), (LE), (I,F), (1,d), (I,M), (I,N)

Level 0 1 2

(
(
(

< o OO —0 mMmmw >

« Mark edges to non-visited vertices with red
« Mark edges to visited vertices with green (dotted)

RRRRRRRRRRRRR
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Breadth-First Search (BFS) — Example

Level

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

Current level: D, G, J, M, N
Edges to consider: (D,C), (D,G),
(D,H), (G, C), (G,D), (G,J), (GK),
(G,L), (J.G), (J]), (J.K), (M,]),
(M,N), (N,I), (N,K), (N,M)

visited

r X I Z2 < « O 00-—-0 TmTmw >»

discovery

edge
None
(A,B)
(A.E)
(A.F)
(B.C)
(E.1)
(C.D)
(C,G)
(1,J)
(ILM)
(LN)
(D,H)
(G.K)
(G,L)
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visited discovery

edge

Breadth-First Search (BFS) — Example A None
B (A,B)
Level E ( )
F (A,F)
C (B,C)
| (E,I)
D (C,D)
4 G (C,G)
J (1,J)
M (1,M)
N (I,N)
H (D,H)
K (G,K)
Current level: H, K, L L (G,L)
Edges to consider: (H,D), (H,L),
(K,G), (K.J), (K.N), (K,0), (L,G), O (K,0)
(L,H), (L,P) P (L,P)

RRRRRRRRRRRRR
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visited discovery

edge

Breadth-First Search (BFS) — Example

None
(A,B)
AE)
A,F)
B,C)
(E.1)
(C.D)
(C,G)
(1,J)
(ILM)
(LN)
D,H)
G,K)
(G,L)
(K,0)
RRRRRRRRRRRRR (L,P)
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Level 0 1 2 3 (
(
(

(
(

Current level: O, P
Edges to consider: (O, K), (P, L)
No new nodes, stop.

T O X Iz« OUOO-0mTTmMmMmw>»




visited discovery

edge

Breadth-First Search (BFS) — Example

None
(A B)
)

« Edges of BFS traversal tree (starting from A)
marked in red (discovery edges)

T O X ITZ2Z OO -0mTMMmMmw >»
<
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Breadth-First Search (BFS) - Properties

* Proposition. A path p; in a breadth-first search rooted at vertex s to any other vertex v is
guaranteed to be the shortest such path from s to v in terms of the number of edges.

« Justification. Suppose that there was another path, p, from s to v that was shorter than p;

- This means that p, is at least one edge shorter than p,

- This means that v was already discovered on the previous level by p,

- But p, is also a path in the BFS tree — so v appears on two levels — contradiction,
because the levels are made of disjoint nodes, marked as visited on their first visit
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Breadth-First Search (BFS) — Properties (cont’d)

« Consider G, an undirected graph on which a BFS traversal starting at vertex s has been
performed. Then:

- The traversal visits all vertices of ¢ that are reachable from s

- For each vertex at level i, the path of the BFS tree between s and v has i edges, and
any other path of G from s to v has at least i edges

- If (u,v) is an edge that is not in the BFS tree then the level number of v can be at most
1 greater than the level number of u

 Exercise: try to justify each of these properties using contradiction or induction.
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Breadth-First Search (BFS) — Running time

» For a graph G with n vertices and m nodes represented using an adjacency list structure
a BFS traversal takes O (n + m) time if the graph is connected if 1 and 2 are satisfied

» As in the DFS case, if ng < n is the number of vertices reachable from s, and m; < m is
the number of edges incident to those vertices, then BFS runs in O(ng + my) time if

1. The data structure used to represent the graph can iterate though the edges of a
vertex, incident_edges(v) in O(deg(v)) time, and can find the opposite vertex,
e.opposite(v) in 0(1) time

2. There is a method to mark the vertex or edge as explored, and to test if a vertex or
edge has been explored in 0(1) time

A procedure similar to the DFS_complete() function can be used to explore the entire
graph in cases where the graph is made of multiple connected components
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BFS vs. DFS

Undirected Graph Applications

DFS

BFS

Find a set of vertices that are reachable from a given source,
and determine paths to those vertices

Shortest paths

Test the connectivity of a graph

Identify connected components

Locate a cycle

< | <L £ <
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Thank you.
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