FACULTY OF
Humanities
Department of General and Computational Linguistics

Graphs

Data Structures and Algorithms for CL III, WS 2019-2020

Corina Dima

corina.dima@uni-tuebingen.de

Data Structures \& Algorithms in Python

> 14.1 Graphs * The Graph ADT
> 14.2 Data Structures for Graphs
> * Edge List Structure
> * Adjacency List Structure
> * Adjacency Map Structure
> * Adjacency Matrix Structure

Co-authorship Graph - undirected graph

[^0] Eigenvector centrality and represented by size.

Image from Alex Garnett, Grace Lee and Judy Illes. 2013. Publication trends in neuroimaging of minimally conscious states. PeerJ.
Search
OrthForm or Id: Katze $\quad \checkmark$ Ignore Case Find

GermaNet Graph
 - directed graph

From
http://www.sfs.uni-
tuebingen.de/Isd/documents/illustrations/ GernEdiT-screenshot-large.gif

Synsets

48836 nomen Tier [Katze]

50696 nomen Tier [Katze]

Lexical Units

\square

Conceptual Relations Editor	Graph with Hyperonyms and Hyponyms	Lexical Relations Editor	Examples and Frames

Hyperonyms and Hyponyms

City Map - mixed graph

DBpedia

Mixed graph

http://dbpedia.org/page/Berlin
http://en.lodlive.it/?http\%3A\%2F\%2Fdbpedia.org\%2Fresource\%2FBerlin

Graphs

- A graph G is a set V of vertices - together with a collection E of pairwise connections between vertices from V, called edges
- Graphs are a way of representing relationships that exist between pairs of objects

- Edges in a graph are either directed or undirected
- An edge (u, v) is directed from u to v if the pair (u, v) is ordered, with u
 preceding v
- An edge (u, v) is undirected if the pair (u, v) is not ordered

Types of Graphs

- undirected graph: all the edges in the graph are undirected

- directed graph (digraph): all the edges in the graph are directed
- mixed graph: has both directed and undirected edges

Graph Terminology

- Two vertices joined by an edge are called the end vertices/endpoints of the edge
- u and v are the endpoints of edge 1
- Two vertices u and v are adjacent if there is an edge whose end vertices are u and v
- v and x are adjacent
- An edge is called incident to a vertex if the vertex is one of the edge's endpoints
- edges 1, 2 and 4 are incident to v
- The degree of a vertex, $\operatorname{deg}(v)$, is the number of incident edges of v : v has degree 3
- Edges with the same endpoints are called parallel edges:

- 8 and 9 are parallel edges
- An edge is a self-loop is its two endpoints coincide:
- 10 is a self-loop

Graph Terminology (cont'd)

- A path is a sequence of alternating edges and vertices that
- Starts with a vertex
- Ends with a vertex
- Each edge is incident to its predecessor and successor vertex
- A path is simple if each vertex in the path is distinct
- Examples of paths
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ not a simple path because W appears twice

Graph Terminology (cont'd)

- A cycle is a path that
- Starts and ends at the same vertex
- Includes at least one edge
- A cycle is simple if all its vertices are distinct, except for the first and the last vertex
- Examples of cycles
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle
- $C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a, U)$ is not a simple cycle because C_{2} goes twice through W

Graph Terminology (cont'd)

- A vertex u reaches a vertex v, and v is reachable from u if there is a path from u to v
- u reaches y in G_{1}
- u does not reach b in G
- A graph is connected if for any two vertices there is a path between them

- G_{1} and G_{2} are connected graphs
- G is not a connected graph
- A subgraph of a graph of G is a graph whose vertices and edges are subsets of the vertices and edges of G
- G_{1} and G_{2} are subgraphs of G
- If a graph is not connected, its maximal connected subgraphs are called the connected components of G
- G_{1} and G_{2} are the connected components of G

Graph Terminology (cont'd)

- a spanning subgraph of a graph G is a subgraph of G containing all the vertices of G
- A forest is a disconnected graph without cycles
- A tree is a connected forest - that is - a connected graph without cycles
- A spanning tree of a graph is a spanning subgraph that is a tree

spanning subgraph

spanning tree

(h)

Graph Properties

- Property 1 . If G is a graph with m edges and vertex set V, then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 m
$$

- Justification. Any edge (u, v) is counted twice in the summation:
- Once for its endpoint u
- Once for its endpoint v
- The total contribution of the edges to the degrees of the vertices is twice the number of edges.

Graph Properties (cont'd)

- Property 2. If G is a simple undirected graph with n vertices and m edges, then

$$
m \leq \frac{n(n-1)}{2}
$$

- Justification. G is simple, meaning that -
- there are no edges that have the same endpoints (no parallel edges)
- there are no self-loops
- then the maximum degree of a vertex in G is $n-1$
- according to property $1,2 m \leq n(n-1) \Rightarrow m \leq \frac{n(n-1)}{2}$

The Graph ADT

The Graph ADT

- A graph is a collection of vertices and edges
- Can be modelled as a combination of three data types: Vertex, Edge and Graph
- class Vertex
- Lightweight object storing the information provided by the user
- The element() method provides a way to retrieve the stored information
- class Edge
- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge
- endpoints() method: returns a tuple (u, v) where u and v are the Vertex objects
- opposite(v) method: assuming vertex v is one endpoint of an edge, return the other endpoint

The Graph ADT (cont'd)

- class Graph: can be either undirected or directed - flag provided to the constuctor

vertex_count()	returns the number of vertices of the graph
vertices()	returns an iteration of all the vertices of the graph
edge_count()	returns the number of edges of the graph
edges()	returns an interation of all the edges of the graph
get_edge(u,v)	returns the edge from vertex u to vertex v, if one exists, otherwise None
degree(v)	returns the number of edges incident to vertex v
incident_edges(v)	returns an iteration of all edges incident to vertex v
insert_vertex(v, x=None)	create and return a new Vertex storing element x
insert_edge(u,v,x=None)	create and return a new Edge from vertex u to vertex v, storing x
remove_vertex(v)	remove vertex v and all its incident edges from the graph
remove_edge(e)	remove edge e from the graph

Data Structures for Graphs

Data Structures for Graphs

- Four data structures for representing a graph

1. Edge list
2. Adjacency list
3. Adjacency map
4. Adjacency matrix

- In each representation
- Same: maintain a collection to store the vertices of a graph
- Different: organize the edges

Edge List Structure

- In an edge list, we maintain
- an unordered list V to store all vertex objects
- an unordered list E to store all edge objects
- To support the methods of the Graph ADT, assume:

- Vertex
- A reference to element x to support the element() method
- A reference to the position of the vertex instance in the list V - for efficient vertex removal
- Edge
- A reference to element x, to support the element() method
- A reference to the position of the edge instance in list E - for efficient edge removal
- References to the vertex objects associated with the endpoints of e

Edge List Structure (cont'd)

- In an edge list, we maintain
- an unordered list V to store all vertex objects
- an unordered list E to store all edge objects
- A very simple structure, though not very efficient:

- locating a particular edge (u, v) - traversing the entire edge list
- obtaining the set of all edges incident to a vertex v - again, traverse then entire edge list

Edge List Structure - Performance

- Space usage
- $O(n+m)$ for a graph with n vertices and m edges
- Assuming each individual vertex or edge uses O (1) space
- The lists V and E use space proportional to their number of entries

Edge List Structure - Performance (cont'd)

Operation	Running Time
vertex_count(), edge_count()	$O(1)$
vertices()	$O(n)$
edges()	$O(m)$
get_edge(u,v), degree(v), incident_edges(v)	$O(m)$
insert_vertex(x), insert_edge(u,v,x), remove_edge(e)	$O(1)$
remove_vertex(v)	$O(m)$

- get_edge(u, v), degree(v), incident_edges(v) could be implemented more efficiently than $O(m)$
- remove_vertex (v) also entails removing all the edges incident to v - otherwise the edges would point to a non-existing vertex of the graph - hence $O(\mathrm{~m})$

Adjacency List Structure

- In an adjacency list, we maintain
- For each vertex, a separate list containing those edges tha are incident to the vertex
- To support the methods of the Graph ADT, assume:

- Vertex
- A reference to element x to support the element() method
- A reference to the position of the vertex instance in the list $V-$ for efficient vertex removal
- A list $I(v)$ - the incidence list of v - containing the edges that are incident to v
- Edge
- A reference to element x, to support the element() method
- References to the vertex objects associated with e 's endpoints
- References to the positions of the edge instance in lists $I(u)$
 and $I(v)$ - for efficient edge removal

Adjacency List Structure (cont'd)

- In an adjacency list, we maintain
- For each vertex, a separate list containing those edges tha are incident to the vertex
- Benefits compared to the edge list

- The $I(v)$ list of each node v contains exactly the edges that should be reported by incident_edges(v)
- Iterate $I(v)$ in $O(\operatorname{deg}(v))$ time instead of iterating the full edge list - the best possible outcome for any graph representation, since there are $\operatorname{deg}(v)$ edges to report

Adjacency List Structure - Performance

- Space usage: asymptotically, the same as the edge list structure
- $O(n+m)$ for a graph with n vertices and m edges
- The primary vertex list uses $O(n)$ space
- The sum of all secondary lists containing the edges incident to each vertex is $O(\mathrm{~m})$
- An undirected edge (u, v) is referenced both in $I(u)$ and in $I(v)$, but its presence in the graph results only in a constant amount of additional space

Adjacency List Structure - Performance (cont'd)

Operation	Running Time
vertex_count(), edge_count()	$O(1)$
vertices()	$O(n)$
edges()	$O(m)$
get_edge(u,v)	$O(\min (\operatorname{deg}(u), \operatorname{deg}(v)))$
degree(v)	$O(1)$
incident_edges(v)	$O(\operatorname{deg}(v))$
insert_vertex(x), insert_edge $(\mathrm{u}, \mathrm{v}, \mathrm{x})$	$O(1)$
remove_edge(e)	$O(1)$
remove_vertex(v)	$O(\operatorname{deg}(v))$

- get_edge (u, v) - we can look for the edge in either the list of u or that of v - take the shortest
- Because we are storing the positions of e in $I(u)$ and $I(v)$, removing an edge takes $O(1)$ time
- To remove a vertex v we need to also remove all its incident edges - but there are all in $I(v)$, so remove_vertex (v) runs in $O(\operatorname{deg}(v))$ time

Adjacency Map Structure

- In an adjacency map, we maintain
- For each vertex v, a separate hash-map
- Each entry has as key the vertex that is opposite to v, and as value the edge which has u and v as endpoints
- To support the methods of the Graph ADT, assume:
- Vertex
- A reference to element x to support the element() method
- A reference to the position of the vertex instance in the list V - for efficient vertex removal
- A hashmap $I(v)$ - containing (vertex, edge) pairs where the vertices are the opposites of v and the edges are the edges incident to v
- Edge
- A reference to element x, to support the element() method
- References to the vertex objects associated with e 's endpoints

Adjacency Map Structure

- In an adjacency map, we maintain
- For each vertex v, a separate hash-map
- Each entry has as key the vertex that is opposite to v, and as value the edge which has u and v as endpoints
- Benefits compared to the adjacency list
- get_edge(u,v) can be implemented in expected O (1) time by searching for vertex u as a key in $I(v)$ or vice-versa
- this is better than in the adjacency list case, where the best case performance was $O(\min (\operatorname{deg}(u), \operatorname{deg}(v)))$

Adjacency Map Structure - Performance

- Space usage
- $O(n+m)$, just like the adjacency list
- For each vertex u, $I(u)$ - an adjacency map uses $O(\operatorname{deg}(u))$ space

Adjacency Map Structure - Performance (cont'd)

Operation	Edge List	Adj. List	Adj. Map
vertex_count ()	$O(1)$	$O(1)$	$O(1)$
edge_count ()	$O(1)$	$O(1)$	$O(1)$
vertices()	$O(n)$	$O(n)$	$O(n)$
edges()	$O(m)$	$O(m)$	$O(m)$
get_edge(u,v)	$O(m)$	$O\left(\min \left(d_{u}, d_{v}\right)\right)$	$O(1)$ exp.
degree(v)	$O(m)$	$O(1)$	$O(1)$
incident_edges(v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$
insert_vertex(x)	$O(1)$	$O(1)$	$O(1)$
remove_vertex(v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$
insert_edge(u,v,x)	$O(1)$	$O(1)$	$O(1)$ exp.
remove_edge(e)	$O(1)$	$O(1)$	$O(1) \exp$.

- d_{v} - the degree of v
- an adjacency map achieves essentially optimal running times for all methods, making in an excellent all-purpose choice as a graph representation structure

Adjacency Matrix Structure

- In an adjacency matrix structure, we maintain
- An $n \times n$ matrix A of edges, storing references to edges
- $A[i, j]$ stores a reference to the edge (u, v) if it exists, where u is the vertex with index i and v is the vertex with index j
- if there is no such edge, then $A[i, j]=$ None
- A is symmetric if the graph is undirected
- An edge between a given pair of vertices can be retrieved in worst-case constant time

Adjacency Matrix Structure - Performance

- Space usage
- $O\left(n^{2}\right)$ space, much worse than the $O(n+m)$ needed for the other three structures
- Although if the graph is dense the number of edges is proportional to $O\left(n^{2}\right)$
- In practice, most real-word graphs are sparse - making the adjacency matrix structure inefficient, since it will store many None values
- If a graph is dense, a adjacency matrix might be more efficient then an adjacency list or map
- Particularly if edges have no auxiliary data, then an adjacency matrix can be implemented using a Boolean matrix, using 1 bit to store information about each edge slot, e.g. $A[i, j]=$ True if and only if (u, v) is an edge in the graph

Adjacency Matrix Structure - Performance (cont'd)

Operation	Edge List	Adj. List	Adj. Map	Adj. Matrix
vertex_count ()	$O(1)$	$O(1)$	$O(1)$	$O(1)$
edge_count ()	$O(1)$	$O(1)$	$O(1)$	$O(1)$
vertices ()	$O(n)$	$O(n)$	$O(n)$	$O(n)$
edges ()	$O(m)$	$O(m)$	$O(m)$	$O(m)$
get_edge(u,v)	$O(m)$	$O\left(\min \left(d_{u}, d_{v}\right)\right)$	$O(1)$ exp.	$O(1)$
degree(v)	$O(m)$	$O(1)$	$O(1)$	$O(n)$
incident_edges (v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$	$O(n)$
insert_vertex(x)	$O(1)$	$O(1)$	$O(1)$	$O\left(n^{2}\right)$
remove_vertex (v)	$O(m)$	$O\left(d_{v}\right)$	$O\left(d_{v}\right)$	$O\left(n^{2}\right)$
insert_edge(u,v,x)	$O(1)$	$O(1)$	$O(1) \exp$.	$O(1)$
remove_edge(e)	$O(1)$	$O(1)$	$O(1) \exp$.	$O(1)$

- get_edge(u,v) is an $O(1)$ operation
- Several operations are less efficient:
- degree(v), incident_edges(v) - we need to examine all n entries in the row associated with vertex $v-O(n)$
- insert_vertex(v), remove_vertex(v) - the matrix has to be resized - $O\left(n^{2}\right)$

Python Implementation - using an Adjacency Map variant

- Use a Python dictionary to represent each secondary incidence map, $I(v)$
- Use a top-level dictionary D to map each vertex v to its incidence map, $I(v)$
- All the vertices of the graph can be obtained by iterating over the keys of D
- This frees us from having to keep indices for the position of the vertices in the Vertex
- Also, rather than maintaining a separate list of edges, the edges can be found in $O(n+$ m) time by taking the union of the edges found in all the incidence maps

Vertex class

```
#
class Vertex:
    """Lightweight vertex structure for a graph."""
    __slots__ = '_element'
    def __ init __(self, x):
        """Do not call constructor directly. Use Graph's insert_vertex(x)."""
        self._element = x
    @property
    def element(self):
        """Return element associated with this vertex."""
        return self._element
    def __hash__(self): # will allow vertex to be a map/set key
        return hash(id(self))
```


slots

- By default Python represents each namespace with an instance dictionary of the built-in dict class- this maps identifying names in the scope to the associated objects
- While a dictionary structure supports relatively efficient name lookups, it requires additional memory beyond the raw data that it stores.
- Python provides a more direct mechanism for representing instance namespaces, that avoids the use of an auxiliary dictionary.
- To streamline the representation for all instances of a class, the class should define a class-level member named __slots__ that is assigned a fixed sequence of strings that serve as names for instance variables
- Advisable in particular in any nested classes that are expected to have many instances
.

init

- Whenever an instance of the Vertex class is created using a statement of the type $v=$ Vertex("A"), a special method called \qquad init \qquad is called
- __init__ serves as the constructor of the class
- It is responsible primarily for establishing the state of the new object - e.g. set up the _element instance variable in the case of Vertex, set up the _origin, _destination and _element in the case of Edge
- By convention a single leading underscore in the name of a data member, such as _element implies that it is intended as nonpublic; users of a class should not directly access such members

@property

- @property is a decorator which indicates that the element(self) method is a "getter" method, and that the name of the property is the method name only - e.g. only element
- A decorator is a function which receives another function as an argument
- The behavior of the argument function is extended by the decorator without actually modifying it
- The element of a vertex can then be obtained using x.element
- There is also a corresponding way of creating a setter using the @f.setter decorator

```
@element.setter
def element(self, el):
    self._element = el
```


hash

- Standard Python mechanism for computing hash codes - hash(x) returns an integer value that serves as a hash code for object x
- Only immutable data types are hashable in Python - to ensure that the object's hash code remains constant during the lifetime of the object
- It an object is inserted into a hash table, and then its hash code would change, then a different object would be retrieved from the hash table
- Instances of user-defined classes are unhashable by default
- A function that computes the hash code can be implemented via the \qquad hash \qquad method within the class
- The returned hash code should reflect the immutable attributes of an instance (e.g. _element would not make for a good attribute for hashing, it might be updated)
- Also, if $x==y$, then hash $(x)==$ hash(y)
\#nested Edge class
class Edge:
"""Lightweight edge structure for a graph."""
__slots_- = '_origin', '_destination', '_element'
def __init __(self, $u, v, x)$:
""" Do not call constructor directly. Use Graph's insert_edge(u,v,x).""
self._origin $=u$
self..destination $=v$
self._element $=\mathrm{x}$
def endpoints(self):
"""Return (u, v) tuple for vertices u and $v . " "$ "
return (self._origin, self._destination)
def opposite(self, \mathbf{v}):
"""Return the vertex that is opposite von this edge."""
return self._destination if v is self._origin else self._origin
def element(self):
"""Return element associated with this edge.""
return self._element
def __hash __(self): \# will allow edge to be a map/set key
return hash((self._origin, self._destination))

self

- self identifies the instance upon which a method is invoked
- self is also used to store the instance variables that reflect its current state
- self._element refers to an instance variable named _element that is stored as part of that particular Vertex's state
- There is a difference between a method signature as declared within a class vs. that used by a caller:
- E.g. from the user's perspective the opposite() method takes one parameter, the Vertex v, while endpoints() takes no parameters
- However, within the class definition self in an explicit parameter, making opposite() have two parameters, and endpoints() one parameter
- The Python interpreter will automatically bind the instance upon which the method is invoked to the self parameter

```
class Graph:
    ""Representation of a simple graph using an adjacency map.""
def __init__(self, directed=False):
    """Create an empty graph (undirected, by default).
    Graph is directed if optional paramter is set to True.
    self._outgoing = { }
    # only create second map for directed graph; use alias for undirected
    self..incoming = { } if directed else self._outgoing
    def is_directed(self):
    """Return True if this is a directed graph; False if undirected.
    Property is based on the original declaration of the graph, not its contents.
    return self._incoming is not self._outgoing # directed if maps are distinct
    def vertex_count(self):
    """Return the number of vertices in the graph."""
    return len(self._outgoing)
def vertices(self):
    ""Return an iteration of all vertices of the graph."""
    return self._outgoing.keys()
def edge_count(self):
    """Return the number of edges in the graph."""
    total = sum(len(self._outgoing[v]) for v in self._outgoing)
    # for undirected graphs, make sure not to double-count edges
    return total if self.is_directed( ) else total // 2
    def edges(self):
    """Return a set of all edges of the graph."""
    result = set( ) # avoid double-reporting edges of undirected graph
    for secondary_map in self._outgoing.values():
        result.update(secondary_map.values()) # add edges to resulting set
    return result
```


Python Generators

- The most convenient technique for creating iterators in Python is through the use of generators
- A generator is implemented with a syntax that is very similar to a function, but instead of returning values, a yield statement is executed to indicate each element of a sequence
- It is illegal to combine return and yield statements in the same implementation
- Lazy evaluation: the results are only computed if requested, the entire sequence need not reside in memory at one time - generators can produce infinite sequences of values
- Generator comprehensions do not create temporary lists

Graph Class,
def get_edge(self, $u, v)$
"""Return the edge from u to v, or None if not adjacent.""
return self._outgoing[u].get(v) \# returns None if v not adjacent
def degree(self, v, outgoing=True):
""" Return number of (outgoing) edges incident to vertex v in the graph.
If graph is directed, optional parameter used to count incoming edges.
"""
$\operatorname{adj}=$ self._outgoing if outgoing else self._incoming
return len(adj[v])
def incident_edges(self, v, outgoing=True):
"""Return all (outgoing) edges incident to vertex v in the graph.
If graph is directed, optional parameter used to request incoming edges.
"""
adj $=$ self._outgoing if outgoing else self._incoming
for edge in adj[v].values():
yield edge
def insert_vertex(self, $x=$ None):
"""Insert and return a new Vertex with element x."""
v = self.Vertex (x)
self._outgoing[v] $=\{ \}$
if self.is_directed():
self._incoming $[\mathrm{v}]=\{ \} \quad$ \# need distinct map for incoming edges
return v
def insert_edge(self, $u, v, x=$ None):
"""Insert and return a new Edge from u to v with auxiliary element $x . "$ ""
$e=$ self.Edge(u, v, x)
self._outgoing $[u][v]=e$
self._incoming $[v][u]=e$

Thank you.

[^0]: Figure 2 Co-authorship graph of NiMCS and related research. Nodes represent authors; edges represent co-authorship. Graph layout uses the ForceAtlas2 algorithm. Clusters are calculated via Louvain modularity and delineated by color. Frequency of co-authorship is calculated via

