EBERHARD KARLS

UNIVERSITAT
TUBINGEN

FACULTY OF
HUMANITIES

Department of General and Computational Linguistics

Graphs

- 0000000000000
Data Structures and Algorithms for CL lll, WS 2019-2020

Corina Dima
corina.dima@uni-tuebingen.de

Data Structures & Algorithms in Python

MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

Data Structures
& Algorithms

EBERHARD KARLS am
UNIVERSITAT &
TUBINGEN

14.1 Graphs
s The Graph ADT

14.2 Data Structures for Graphs
% Edge List Structure
% Adjacency List Structure
% Adjacency Map Structure
% Adjacency Matrix Structure

Graphs | 2

Co-authorship Graph — undirected graph

e
P o § C‘m-l.ntolh
Y Louls .asse!

Mel Boly) S
Audrey Va..ldenhuyse

Marie runo o oin
oo L“"".""‘:" 0.21: Ejsose‘ Fins Nichol‘ Schiff#
Carolnn’makers Joseph‘iacino o
Steve ureys

Stev’jerus Martiv‘Montl
/ Gusta'oonen Adnal.Owen
series e Y o
‘- - ...‘

Ouentin.homme -

OIwna
gz~ 0.375

~..°-...
Figure 2 Co-authorship graph of NiMCS and related research. Nodes represent authors; edges represent co-authorship. Graph layout uses the
ForceAtlas2 algorithm. Clusters are calculated via Louvain modularity and delineated by color. Frequency of co-authorship is calculated via
Eigenvector centrality and represented by size.

Image from Alex Garnett, Grace Lee and Judy llles. 2013. Publication trends in
neuroimaging of minimally conscious states. Peerd.

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Graphs | 3

GermaNet Graph
- directed graph

From

http://www.sfs.uni-
tuebingen.de/lsd/documents/illustrations/
GernEdiT-screenshot-large.qif

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

‘f‘\‘ e ‘/'\‘

GernEdiT - The GermaNet Editor Tool

Editor GermaNet

~Search History

4 Ignore Case (Katze) (sonnig) (testen)

Search

OrthForm or Id: Katze

Synsets

Synsetld Word Category Word Class | All Orth Forms Paraphrase |[Comment |
48836 nomen Tier [Katze]

50696 _lnomen ____[Tier ___lKatze] | | |

(Add New Hyponym) (Delete Synset) (Add New LexUnit) (Use as From) (Use as To) (" Edit

-~

Lexical Units
Lex Unitld Synsetld | Orth Form Orth Var Old Orth Form Old Orth Var Source Named Entity Artificial | Style Marking |

71758 S069%fKatze | | | Jore | & | & | B |

" Delete LexUnit (Use as From) (Use as To) " Edit

-~

Graph with Hyperonyms and Hyponyms Lexical Relations Editor Examples and Frames ‘

Hyperonym Depth: | 2 &

[Conceptual Relations Editor

Hyperonyms and Hyponyms
(Draw/Refresh Graph) " Back |

" Forward

5
Land

506,

katzenartiges

5069€¢

"‘“"e\
50962 50963 50964 50965
Angorak Siamka Perserkal Hauskal

48854
Katzch

4883 4883
Kat Ka

http://www.sfs.uni-tuebingen.de/lsd/documents/illustrations/GernEdiT-screenshot-large.gif

City Map - mixed graph

D Institut fir
Politikwissenschaft

9 Kallari-Futuro

yrenzentrum
ift Tibingen
s,
00/'//}
U,
S”d
68
Fahrschule Biicheler @)
(7
&
& o Neuapostolische Kirche
‘$§
N
&
N
3, N
e @
&
) T
iologisches
t - Lehrstuhl Il
P
e"/e,sf Neue Donastie
% (M
009 &./
TGF Pizza Tiibingen)
&
L
N
2
£
N
§
) -

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

]

s,
77,
93,
e

9

Naukler Backerei

@

Universitatsklinikum
Tubingen Institut fir...

@

Manusladen
"Freitag nach Vier’

Internationales
Zentrum fur Ethik in...

e

Q

Thai-Massage
@ Sabai Tiibingen

linalal Mafal b

5 Y <
2 histralBe
o Mohlstra
2 O‘\\S\raﬁe MohlstraRe
@ (2
) N
"
¢$ QL? Q Sax H
N $ T
B N
%g/ S
P Parkplatz WilhelmstraRe
)
§ @
T
¢ :
Parkplatz 5’
Carsharing-Station &
> Melanchthonstralle Schiebeparkplatz Q §
e, N
3/70,)”’0 Q § 9

Lothar-Meyer-Bau

Ao

g
&
~~
&
> Neuphilologicum
S

R 9
@

Q Brechtbau-Bibliothek

Africa Bar & Restat

WiesingerMedia.

de | Digitaldruckerei |...
Saints & Scholars
- Irish Pub

Q easy sports Tiibingen

£
4

Graphs | 5

Internet —
undirected graph

8.151.110

Plls.2p9.12 p07.20

I’ ’230.122
\ 0

02.205.230.18%

#
207.205230. 104

org/wiki/Information _visualizati

205.23\ 26

EBERHARD KARLS 9.2 30 -‘J 205.23(B _ N
UNIVERSITAT %

TUBINGEN 0Y.205.230.0

https://en.wikipedia.org/wiki/Information_visualization

Mixed graph

http://dbpedia.org/page/Berlin

EBERHARD KARLS
UNIVERSITAT
TUBINGEN

Alexanderplatz
J..\L..S.I'I Olae 7 Lo
Y5 —[515... *

'\VL\\-\“*
B%e \(\“ .
> O @
ol

Berlin ¢l Berlin « capital, wikiPageWikiLink Germang; Ls

Berlino Berlijn ~Jl country, wikiPageWikiLink, seeAlso » SRuCchieng

« hyperny™ 1) Berlim... 1Y, Alemania...

Capital Capital
(homonymie) F +
E#4)L Capital...
we
o™

7 http://www.berl...

Members of the
Hanseatic League

University towns in
Germany

German state
capitals

Populated places
established in the
13th century

http://en.lodlive.it/?http%3A%2F %2Fdbpedia.org%2Fresource%2FBerlin

Graphs | 7

http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBerlin
http://dbpedia.org/page/Berlin

Graphs

« Agraph G is a set V of vertices — together G
with a collection E of pairwise connections

between vertices from V, called edges 0 Q

« Graphs are a way of representing

relationships that exist between pairs of ° Q
objects

» Edges in a graph are either directed or
undirected

- An edge (u,v) is directed from u to v if @ :@
the pair (u, v) is ordered, with u

preceding v
- An edge (u, v) is undirected if the pair
(u,v) is not ordered @ @

RRRRRRRRRRRR

UNIVERSITAT &
TUBINGEN 7% Graphs | 8

Types of Graphs

« undirected graph: all the
edges in the graph are
undirected

« directed graph (digraph):
all the edges in the graph
are directed

* mixed graph: has both
directed and undirected

edges

RRRRRRRRRRRR B
UNIVERSITAT ¢
TUBINGEN 7

(&
®

N

Graphs | 9

Graph Terminology

« Two vertices joined by an edge are called the end
vertices/endpoints of the edge

- u and v are the endpoints of edge 1

« Two vertices u and v are adjacent if there is an edge whose
end vertices are u and v

- v and x are adjacent

« An edge is called incident to a vertex if the vertex is one of
the edge’s endpoints

- edges 1, 2 and 4 are incident to v

« The degree of a vertex, deg(v), is the number of incident
edges of v: v has degree 3

« Edges with the same endpoints are called parallel edges:
- 8 and 9 are parallel edges

« An edge is a self-loop is its two endpoints coincide:
- 10 is a self-loop

UNIVERSITAT @
TUBINGEN 7

Graphs | 10

Graph Terminology (cont’d)

« A path is a sequence of alternating edges
and vertices that

- Starts with a vertex
- Ends with a vertex

- Each edge is incident to its predecessor
and successor vertex

» A path is simple if each vertex in the path
is distinct
« Examples of paths
- P, =(V,b,X,h,Z) is a simple path

- P, =(U,c,W,e,X,g,Y,f,W,d,V) nota
simple path because W appears twice

RRRRRRRRRRRR
UNIVERSITAT ¢
TUBINGEN 7

Graphs | 11

Graph Terminology (cont’d)

* A cycle is a path that
- Starts and ends at the same vertex

- Includes at least one edge
» A cycle is simple if all its vertices are
distinct, except for the first and the last
vertex

« Examples of cycles
-C;=W,b,X,9,Y,f,W,c,U,a,V)is a
simple cycle
-C,=WU,c,W,e,X,g,Y,f, W,d,V,a,U)is
not a simple cycle because C, goes
twice through W

RRRRRRRRRRRR
UNIVERSITAT ¢
TUBINGEN 7

Graphs | 12

Graph Terminology (cont’d)

* A vertex u reaches a vertex v, and v is reachable from
u if there is a path fromu to v G

- ureaches y in G4
- udoes notreach b in G ° Q
« A graph is connected if for any two vertices there is a Q
path between them °

- G4 and G, are connected graphs

- G is not a connected graph ’
« A subgraph of a graph of ¢ is a graph whose vertices Q
and edges are subsets of the vertices and edges of ¢ e
- 1 and G, are subgraphs of G
« If a graph is not connected, its maximal connected G G

subgraphs are called the connected components of G
- G and G, are the connected components of ¢

UNIVERSITAT
TUBINGEN Graphs | 13

Graph Terminology (cont’d)

® o @
)
 a spanning subgraph of a graph G is a @ % @ © ®
subgraph of ¢ containing all the vertices of G) @
@ @ @ 9 ¢
 Aforest is a disconnected graph without forest
cycles © e ©
« Atree is a connected forest — that is — a ® ®
connected graph without cycles
| | | @ o @
« A spanning tree of a graph is a spanning Q@ ® Q ®
subgraph that is a tree ®
® © @
@ ©) ® @ @ w 9 ¢
©) @ @ @ @ @ ® tree)
© © S
® ®
© © ®
spanning subgraph spanning tree

UNIVERSITAT &
TUBINGEN ~ #& Graphs | 14

Graph Properties

* Property 1. If G is a graph with m edges and vertex set V, then

z deg(v) = 2m

vEeV

« Justification. Any edge (u, v) is counted twice in the summation:

- Once for its endpoint u
- Once for its endpoint v

» The total contribution of the edges to the degrees of the vertices is twice the number of
edges.

UNIVERSITAT
TURINGEN Graphs | 15

Graph Properties (cont’d)

* Property 2. If G is a simple undirected graph with n vertices and m edges, then

- nn—1)
2
« Justification. G is simple, meaning that —

- there are no edges that have the same endpoints (no parallel edges)
- there are no self-loops
- then the maximum degree of a vertex in G isn — 1

n(n—1)

- according to property 1, 2m <n(n—1) > m <

UNIVERSITAT
TUBINGEN Graphs | 16

The Graph ADT

UNIVERSITAT
TUBINGEN Graphs | 17

The Graph ADT

« Agraph is a collection of vertices and edges

« Can be modelled as a combination of three data types: Vertex, Edge and Graph

e class Vertex

- Lightweight object storing the information provided by the user

- The element() method provides a way to retrieve the stored information
« class Edge

- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge
- endpoints() method: returns a tuple (u, v) where u and v are the Vertex objects

- opposite(v) method: assuming vertex v is one endpoint of an edge, return the
other endpoint

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Graphs | 18

The Graph ADT (cont’d)

« class Graph: can be either undirected or directed — flag provided to the constuctor

vertex_count()

returns the number of vertices of the graph

vertices()

returns an iteration of all the vertices of the graph

edge_count()

returns the number of edges of the graph

edges()

returns an interation of all the edges of the graph

get_edge(u,Vv)

returns the edge from vertex u to vertex v, if one exists, otherwise None

degree(v)

returns the number of edges incident to vertex v

incident_edges(v)

returns an iteration of all edges incident to vertex v

insert_vertex(v, x=None)

create and return a new Vertex storing element x

insert_edge(u,v, x=None)

create and return a new Edge from vertex u to vertex v, storing x

remove_vertex(v)

remove vertex v and all its incident edges from the graph

remove_edge(e)

RRRRRRRRRRRR
UNIVERSITAT 9
TUBINGEN 7

remove edge e from the graph

Graphs | 19

Data Structures for Graphs

UNIVERSITAT
TUBINGEN % Graphs | 20

Data Structures for Graphs

 Four data structures for representing a graph

1. Edge list

2. Adjacency list

3. Adjacency map

4. Adjacency matrix

* In each representation

- Same: maintain a collection to store the vertices of a graph

- Different: organize the edges

UNIVERSITAT
TUBINGEN Graphs | 21

Edge List Structure

* In an edge list, we maintain
- an unordered list VV to store all vertex objects
- an unordered list E to store all edge objects

 To support the methods of the Graph ADT, assume:
- Vertex

» Areference to element x to support the element() method

« Areference to the position of the vertex instance in the list V — for
efficient vertex removal

- Edge

» Areference to element x, to support the element() method

» Areference to the position of the edge instance in list E — for efficient
edge removal

» References to the vertex objects associated with the endpoints of e

EEEEEEEEEEE
UNIVERSITAT
TUBINGEN

°)tlj

e
(

Graphs | 22

Edge List Structure (cont’d)

* In an edge list, we maintain
- an unordered list VV to store all vertex objects
- an unordered list E to store all edge objects

» A very simple structure, though not very efficient: 4 f N h @
- locating a particular edge (u, v) - traversing the entire edge list

- obtaining the set of all edges incident to a vertex v — again,
traverse then entire edge list

e
(

UNIVERSITAT
TUBINGEN Graphs | 23

Edge List Structure — Performance

» Space usage

- O(n + m) for a graph with n vertices and m edges
- Assuming each individual vertex or edge uses 0(1) space
- The lists VV and E use space proportional to their number of entries

UNIVERSITAT
TUBINGEN Graphs | 24

Edge List Structure — Performance (cont’d)

Operation Running Time
vertex_count(), edge_count() (1)
vertices() n)
edges() m)

get_edge(u,v), degree(v), incident_edges(v)
insert_vertex(x), insert_edge(u,v,x), remove_edge(e)
remove_vertex(v)

SIS
S

3

get_edge(u, v), degree(v), incident_edges(v) could be implemented more efficiently than O(m)

remove_vertex(v) also entails removing all the edges incident to v — otherwise the edges would point
to a non-existing vertex of the graph — hence 0(m)

UNIVERSITAT &
TUBINGEN ~ #& Graphs | 25

Adjacency List Structure

* In an adjacency list, we maintain

- For each vertex, a separate list containing those edges tha
are incident to the vertex

 To support the methods of the Graph ADT, assume:
- Vertex

» Areference to element x to support the element() method
» Areference to the position of the vertex instance in the list V —
for efficient vertex removal
» Alist I(v) — the incidence list of v — containing the edges that
are incident to v
- Edge

» Areference to element x, to support the element() method

» References to the vertex objects associated with e’s endpoints

» References to the positions of the edge instance in lists I(u)
and I(v) — for efficient edge removal

EEEEEEEEEEE
UNIVERSITAT
TUBINGEN

e 8
1% w
v

e

Graphs | 26

Adjacency List Structure (cont’d)

* In an adjacency list, we maintain

- For each vertex, a separate list containing those edges tha e 8
are incident to the vertex
. | v W—
» Benefits compared to the edge list f h
- The I(v) list of each node v contains exactly the edges that
should be reported by incident_edges(v) 1%

- lterate I(v) in O(deg(v)) time instead of iterating the full
edge list — the best possible outcome for any graph
representation, since there are deg(v) edges to report —

e

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Graphs | 27

Adjacency List Structure - Performance

« Space usage: asymptotically, the same as the edge list structure

- O(n + m) for a graph with n vertices and m edges
- The primary vertex list uses 0(n) space

- The sum of all secondary lists containing the edges incident to each vertex is 0(m)

« An undirected edge (u, v) is referenced both in I(u) and in I(v), but its presence in the
graph results only in a constant amount of additional space

UNIVERSITAT
TUBINGEN Graphs | 28

Adjacency List Structure — Performance (cont’d)

Operation Running Time
vertex_count(), edge_count() o(1)

vertices() O(n)

edges() O(m)

get_edge(u,v) O(min(deg(u),deg(v)))
degree(v) o(1)
incident_edges(v) O(deg(v))
insert_vertex(x), insert_edge(u,v,x) | O(1)

remove_edge(e) o(1)

remove_vertex(v) O(deg(v))

get_edge(u,Vv) — we can look for the edge in either the list of u or that of v — take the shortest

« Because we are storing the positions of e in I(u) and I(v), removing an edge takes 0(1) time

« To remove a vertex v we need to also remove all its incident edges — but there are all in I(v), so
remove_vertex(v) runs in 0(deg(v)) time

RRRRRRRRRRRR

UNIVERSITAT &
TUBINGEN %

Graphs | 29

Adjacency Map Structure

 In an adjacency map, we maintain
- For each vertex v, a separate hash-map

- Each entry has as key the vertex that is opposite to v, and as
value the edge which has u and v as endpoints

 To support the methods of the Graph ADT, assume:

- Vertex

» Areference to element x to support the element() method

» Areference to the position of the vertex instance in the list V — for
efficient vertex removal

* A hashmap I(v) — containing (vertex, edge) pairs where the vertices

are the opposites of v and the edges are the edges incident to v
- Edge

» Areference to element x, to support the element() method
» References to the vertex objects associated with e’s endpoints

EEEEEEEEEE B
UNIVERSITAT ¢
TUBINGEN 7

Graphs | 30

Adjacency Map Structure

 In an adjacency map, we maintain

- For each vertex v, a separate hash-map e 8
- Each entry has as key the vertex that is opposite to v, and as y ¥ W @
value the edge which has u and v as endpoints
« Benefits compared to the adjacency list V S,
vV W
- get_edge(u,Vv) can be implemented in expected 0(1) time by W ¥ ¥
searching for vertex u as a key in I(v) or vice-versa %
u w
- this is better than in the adjacency list case, where the best case —()—= ¥ }
e

performance was O(min(deg(u), deg(v)))

UNIVERSITAT
TUBINGEN Graphs | 31

Adjacency Map Structure - Performance

» Space usage

- O0(n + m), just like the adjacency list

- For each vertex u, I(u) - an adjacency map uses 0(deg(u)) space

UNIVERSITAT
TUBINGEN Graphs | 32

Adjacency Map Structure — Performance (cont’d)

Operation Edge List | Adj. List Adj. Map
vertex_count() O(1) O(1) o(1)
edge_count() O(1) O(1) o(1)
vertices() O(n) O(n) O(n)
edges() O(m) O(m) O(m)
get_edge(u,v) O(m) O(min(d,,d,)) | O(1) exp
degree(v) O(m) O(1) o(1)
incident_edges(v) | O(m) Oo(d,) o(d,)
insert_vertex(x) O(1) O(1) o(1)
remove_vertex(v) | O(m) 0O(d,) o(d,)
insert_edge(u,v,x) | O(1) O(1) O(1) exp
remove_edge(e) O(1) O(1) O(1) exp

d, - the degree of v
« an adjacency map achieves essentially optimal running times for all methods, making in an
excellent all-purpose choice as a graph representation structure

EEEEEEEEEE an
UNIVERSITAT ¢
TUBINGEN 2

Graphs | 33

Adjacency Matrix Structure

 In an adjacency matrix structure, we maintain
- An n X n matrix A of edges, storing references to
edges

- A[i, j] stores a reference to the edge (u,v) if it
exists, where u is the vertex with index i and v is
the vertex with index j

« if there is no such edge, then A[i,j] = None
- A is symmetric if the graph is undirected 0

Q|

- An edge between a given pair of vertices can be
retrieved in worst-case constant time

oQ

NS < S
W N = O
oQ
oy
=

UNIVERSITAT
TUBINGEN Graphs | 34

Adjacency Matrix Structure - Performance

» Space usage

- 0(n®) space, much worse than the O(n + m) needed for the other three structures
- Although if the graph is dense the number of edges is proportional to 0(n?)

- In practice, most real-word graphs are sparse — making the adjacency matrix structure
inefficient, since it will store many None values

- If a graph is dense, a adjacency matrix might be more efficient then an adjacency list
or map

- Particularly if edges have no auxiliary data, then an adjacency matrix can be
implemented using a Boolean matrix, using 1 bit to store information about each edge
slot, e.g. Ali, j] = True if and only if (u, v) is an edge in the graph

UNIVERSITAT
TURINGEN Graphs | 35

Adjacency Matrix Structure — Performance (cont’d)

Operation Edge List | Adj. List Adj. Map | Adj. Matrix
vertex_count() O(1) O(1) O(1) o(1)
edge_count() O(1) O(1) o(1) o(1)
vertices() O(n) O(n) O(n) O(n)
edges() O(m) O(m) O(m) O(m)
get_edge(u,v) O(m) O(min(d,,d,)) | O(1) exp. | O(1)
degree(v) O(m) o(1) Oo(1) O(n)
incident_edges(v) | O(m) 0(d,) o(d,) O(n)
insert_vertex(x) O(1) O(1) o(1) O(n?)
remove_vertex(v) | O(m) 0(d,) o(d,) O(n?)
insert_edge(u,v,x) | O(1) o(1) O(1) exp. | O(1)
remove_edge(e) O(1) O(1) O(1) exp. | O(1)

get_edge(u,Vv) is an 0(1) operation
« Several operations are less efficient:
degree(v), incident_edges(v) — we need to examine all n entries in the row associated
with vertex v — 0(n)
insert_vertex(v), remove_vertex(v) —the matrix has to be resized - 0(n?)

UNIVERSITAT &
TUBINGEN 7% Graphs | 36

Python Implementation — using an Adjacency Map variant

« Use a Python dictionary to represent each secondary incidence map, I(v)

« Use a top-level dictionary D to map each vertex v to its incidence map, I(v)

« All the vertices of the graph can be obtained by iterating over the keys of D

* This frees us from having to keep indices for the position of the vertices in the Vertex

 Also, rather than maintaining a separate list of edges, the edges can be found in O(n +
m) time by taking the union of the edges found in all the incidence maps

UNIVERSITAT
TUBINGEN Graphs | 37

Vertex class

1 e nested Vertex class ---——--—-——-—————e——-

2 class Vertex:

3 """ Lightweight vertex structure for a graph.”"”

4 __slots__ = '_element'

5

6 def __init__(self, x):

7 """ Do not call constructor directly. Use Graph's insert_vertex(x)."""
8 self. _element = x

9 @property
10 def element(self):
11 """ Return element associated with this vertex."""
12 return self._element
13
14 def __hash__(self): # will allow vertex to be a map/set key
15 return hash(id(self))

RRRRRRRRRRRR
UNIVERSITAT ¢
TUBINGEN 7

Graphs | 38

__slots

» By default Python represents each namespace with an instance dictionary of the built-in
dict class- this maps identifying names in the scope to the associated objects

« While a dictionary structure supports relatively efficient name lookups, it requires
additional memory beyond the raw data that it stores.

« Python provides a more direct mechanism for representing instance namespaces, that
avoids the use of an auxiliary dictionary.

 To streamline the representation for all instances of a class, the class should define a
class-level member named _ slots that is assigned a fixed sequence of strings that
serve as names for instance variables

» Advisable in particular in any nested classes that are expected to have many instances

UNIVERSITAT
TUBINGEN Graphs | 39

__Init__

* Whenever an instance of the Vertex class is created using a statement of the type v =
Vertex(“A”), a special method called __init__ is called

« _init__ serves as the constructor of the class

* It is responsible primarily for establishing the state of the new object — e.g. set up the
_element instance variable in the case of Vertex, set up the _origin, _destination and
_element in the case of Edge

« By convention a single leading underscore in the name of a data member, such as
_element implies that it is intended as nonpublic; users of a class should not directly
access such members

UNIVERSITAT
TUBINGEN Graphs | 40

@property

* @property is a decorator which indicates that the element(self) method is a “getter”
method, and that the name of the property is the method name only — e.g. only element

» A decorator is a function which receives another function as an argument

» The behavior of the argument function is extended by the decorator without actually
modifying it

* The element of a vertex can then be obtained using x.element

* There is also a corresponding way of creating a setter using the @f.setter decorator

@element.setter
def element(self, el):
self. element = el

UNIVERSITAT
TURINGEN Graphs | 41

__hash__

« Standard Python mechanism for computing hash codes — hash(x) returns an integer
value that serves as a hash code for object x

« Only immutable data types are hashable in Python — to ensure that the object’s hash code
remains constant during the lifetime of the object

- It an object is inserted into a hash table, and then its hash code would change, then a
different object would be retrieved from the hash table
* Instances of user-defined classes are unhashable by default

« A function that computes the hash code can be implemented via the _ hash method
within the class

- The returned hash code should reflect the immutable attributes of an instance (e.g.
_element would not make for a good attribute for hashing, it might be updated)
* Also, if x ==y, then hash(x) == hash(y)

UNIVERSITAT
TUBINGEN Graphs | 42

Edge Class

RRRRRRRRRRRR B
UNIVERSITAT ¢
TUBINGEN 7

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

nested Edge class

class Edge:

Lightweight edge structure for a graph.
__slots__ = '_origin', '_destination', '_element'

def __init__(self, u, v, x):
""" Do not call constructor directly. Use Graph's insert_edge(u,v,x).
self. origin = u
self._destination = v
self. _element = x

def endpoints(self):
""" Return (u,v) tuple for vertices u and v.
return (self._origin, self._destination)

def opposite(self, v):
""" Return the vertex that is opposite v on this edge.
return self._destination if v is self. origin else self. origin

def element(self):
""" Return element associated with this edge.
return self._element

def __hash__(self): # will allow edge to be a map/set key
return hash((self._origin, self._destination))

iraphs | 43

self

* self identifies the instance upon which a method is invoked
» self is also used to store the instance variables that reflect its current state

* self._element refers to an instance variable named _element that is stored as part of that
particular Vertex's state

» There is a difference between a method signature as declared within a class vs. that used
by a caller:

- E.g. from the user’s perspective the opposite() method takes one parameter, the
Vertex v, while endpoints() takes no parameters

- However, within the class definition self in an explicit parameter, making opposite()
have two parameters, and endpoints() one parameter

* The Python interpreter will automatically bind the instance upon which the method is
invoked to the self parameter

UNIVERSITAT
TURINGEN Graphs | 44

Graph Class,
part 1

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

OO\ A W=

W W W W W W W W W WA N DNDNDNDDNDNDNDNDN M= = e e e e e ek ped e
OO UNPHWNFE OOV UMPEWNER OOV WMERE, WN=O WO

class Graph:
""" Representation of a simple graph using an adjacency map.

def __init__(self, directed=False):
""" Create an empty graph (undirected, by default).

Graph is directed if optional paramter is set to True.

self._outgoing = { }
only create second map for directed graph; use alias for undirected
self._incoming = { } if directed else self._outgoing

def is_directed(self):
""" Return True if this is a directed graph; False if undirected.

Property is based on the original declaration of the graph, not its contents.

return self._incoming is not self._outgoing # directed if maps are distinct

def vertex_count(self):
""" Return the number of vertices in the graph.
return len(self._outgoing)

def vertices(self):
""" Return an iteration of all vertices of the graph.”"”
return self._outgoing.keys()

def edge_count(self):
""" Return the number of edges in the graph.”""
total = sum(len(self._outgoing[v]) for v in self._outgoing)
for undirected graphs, make sure not to double-count edges
return total if self.is_directed() else total // 2

def edges(self):
""" Return a set of all edges of the graph.
result = set() # avoid double-reporting edges of undirected graph
for secondary_map in self._outgoing.values():
result.update(secondary_map.values()) # add edges to resulting set
return result

Graphs | 45

Python Generators
« The most convenient technique for creating iterators in Python is through the use of
generators

« A generator is implemented with a syntax that is very similar to a function, but instead of
returning values, a yield statement is executed to indicate each element of a sequence

* It is illegal to combine return and yield statements in the same implementation

 Lazy evaluation: the results are only computed if requested, the entire sequence need not
reside in memory at one time — generators can produce infinite sequences of values

« Generator comprehensions do not create temporary lists

UNIVERSITAT
TUBINGEN Graphs | 46

40 def get_edge(self, u, v):

41 """ Return the edge from u to v, or None if not adjacent.”"”"
42 return self._outgoing[u].get(v) # returns None if v not adjacent
Graph Class, 43
44 def degree(self, v, outgoing=True):
pal't 2 45 """ Return number of (outgoing) edges incident to vertex v in the graph.
46
47 If graph is directed, optional parameter used to count incoming edges.
48
49 adj = self._outgoing if outgoing else self._incoming
50 return len(adj[v])
51
52 def incident_edges(self, v, outgoing=True):
53 """ Return all (outgoing) edges incident to vertex v in the graph.
54
55 If graph is directed, optional parameter used to request incoming edges.
56
57 adj = self._outgoing if outgoing else self._incoming
58 for edge in adj|v].values():
59 yield edge
60
61 def insert_vertex(self, x=None):
62 """Insert and return a new Vertex with element x."""

63 v = self.Vertex(x)
64 self._outgoing[v] = { }
65 if self.is_directed():

66 self._incoming[v] = { } # need distinct map for incoming edges
67 return v

68

69 def insert_edge(self, u, v, x=None):

70 """ Insert and return a new Edge from u to v with auxiliary element x."""

71 e = self.Edge(u, v, x)
72 self._outgoing[u][v] = e
73 self._incoming|[v][u] = e

EBERHARD KARLS am
UNIVERSITAT ¢
TUBINGEN ES

Graphs | 47

Thank you.

EBERHARD KARLS
UNIVERSITAT
TUBINGEN

