

FACULTY OF HUMANITIES Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Corina Dima corina.dima@uni-tuebingen.de

Data Structures & Algorithms in Python

MICHAEL GOODRICH ROBERTO TAMASSIA MICHAEL GOLDWASSER

14.1 Graphs

The Graph ADT

14.2 Data Structures for Graphs

- Edge List Structure
- Adjacency List Structure
- Adjacency Map Structure
- Adjacency Matrix Structure

Co-authorship Graph – undirected graph

Figure 2 Co-authorship graph of NiMCS and related research. Nodes represent authors; edges represent co-authorship. Graph layout uses the ForceAtlas2 algorithm. Clusters are calculated via Louvain modularity and delineated by color. Frequency of co-authorship is calculated via Eigenvector centrality and represented by size.

Image from Alex Garnett, Grace Lee and Judy Illes. 2013. *Publication trends in neuroimaging of minimally conscious states*. PeerJ.

	Or
GermaNet Graph - directed graph	

From

http://www.sfs.unituebingen.de/lsd/documents/illustrations/ GernEdiT-screenshot-large.gif

GernEdiT - The GermaNet Editor Tool
Editor GermaNet
Search Search History
OrthForm or Id: Katze Ignore Case Find Katze sonnig testen
Synsets
Synset Id Word Category Word Class All Orth Forms Paraphrase Comment
48836 nomen Tier [Katze] 50696 nomen Tier [Katze]
Add New Hyponym Delete Synset Add New LexUnit Use as From Use as To Edit
Lexical Units
Lex Unit Id Synset Id Orth Form Orth Var Old Orth Form Old Orth Var Source Named Entity Artificial Style Marking
71758 50696 Katze core
Delete LexUnit Use as From Use as To Edit
Conceptual Relations Editor Graph with Hyperonyms and Hyponyms Lexical Relations Editor Examples and Frames
Hyperonyms and Hyponyms
Draw/Refresh Graph Back Forward Hyperonym Depth: 2
50688 Landraubtier Viech
50689 katzenartiges Landraubtier 50915 Haustier
50696 Katze
48835 48836 48854 Kater Katze Kätzchen Angorakatze Siamkatze Perserkatze Hauskatze

City Map - mixed graph

Internet – undirected graph

https://en.wikipedia.org/wiki/Information_visualization#/media/File:Internet_map_1024.jpg

Mixed graph

http://dbpedia.org/page/Berlin

http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBerlin

Graphs

- A graph G is a set V of vertices together with a collection E of pairwise connections between vertices from V, called edges
- Graphs are a way of representing relationships that exist between pairs of objects
- Edges in a graph are either directed or undirected
 - An edge (u, v) is directed from u to v if the pair (u, v) is ordered, with u preceding v
 - An edge (u, v) is undirected if the pair
 (u, v) is not ordered

Types of Graphs

• undirected graph: all the edges in the graph are undirected

 directed graph (digraph): all the edges in the graph are directed

 mixed graph: has both directed and undirected edges

1

2

3

4

Graph Terminology

- Two vertices joined by an edge are called the end vertices/endpoints of the edge
 - u and v are the endpoints of edge 1
- Two vertices *u* and *v* are adjacent if there is an edge whose end vertices are *u* and *v*
 - v and x are adjacent
- An edge is called incident to a vertex if the vertex is one of the edge's endpoints
 - edges 1, 2 and 4 are incident to $\ensuremath{\textit{v}}$
- The degree of a vertex, deg(v), is the number of incident edges of v: v has degree 3
- Edges with the same endpoints are called parallel edges:
 - 8 and 9 are parallel edges
- An edge is a self-loop is its two endpoints coincide:
 - 10 is a self-loop

- A path is a sequence of alternating edges and vertices that
 - Starts with a vertex
 - Ends with a vertex
 - Each edge is incident to its predecessor and successor vertex
- A path is simple if each vertex in the path is distinct
- Examples of paths
 - $P_1 = (V, b, X, h, Z)$ is a simple path
 - $P_2 = (U, c, W, e, X, g, Y, f, W, d, V)$ not a simple path because *W* appears twice

- A cycle is a path that
 - Starts and ends at the same vertex
 - Includes at least one edge
- A cycle is simple if all its vertices are distinct, except for the first and the last vertex
- Examples of cycles
 - $C_1 = (V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle
 - C₂ = (U, c, W, e, X, g, Y, f, W, d, V, a, U) is not a simple cycle because C₂ goes twice through W

- A vertex *u* reaches a vertex *v*, and *v* is reachable from *u* if there is a path from *u* to v
 - u reaches y in G_1
 - u does not reach b in G
- A graph is connected if for any two vertices there is a path between them
 - G_1 and G_2 are connected graphs
 - G is not a connected graph
- A subgraph of a graph of *G* is a graph whose vertices and edges are subsets of the vertices and edges of *G*
 - G_1 and G_2 are subgraphs of G
- If a graph is not connected, its maximal connected subgraphs are called the connected components of *G*
 - G_1 and G_2 are the connected components of G

G

- a spanning subgraph of a graph *G* is a subgraph of *G* containing all the vertices of *G*
- A forest is a disconnected graph without cycles
- A tree is a connected forest that is a connected graph without cycles
- A spanning tree of a graph is a spanning subgraph that is a tree

JNIVERSITÄT

spanning tree

Graphs | 14

Graph Properties

• Property 1. If *G* is a graph with *m* edges and vertex set *V*, then

 $\sum_{v \in V} \deg(v) = 2m$

- Justification. Any edge (u, v) is counted twice in the summation:
 - Once for its endpoint *u*
 - Once for its endpoint v
- The total contribution of the edges to the degrees of the vertices is twice the number of edges.

Graph Properties (cont'd)

• Property 2. If G is a simple undirected graph with n vertices and m edges, then

$$m \le \frac{n(n-1)}{2}$$

- Justification. *G* is simple, meaning that
 - there are no edges that have the same endpoints (no parallel edges)
 - there are no self-loops
 - then the maximum degree of a vertex in G is n-1
 - according to property 1, $2m \le n(n-1) \Longrightarrow m \le \frac{n(n-1)}{2}$

The Graph ADT

The Graph ADT

- A graph is a collection of vertices and edges
- Can be modelled as a combination of three data types: Vertex, Edge and Graph
- class Vertex
 - Lightweight object storing the information provided by the user
 - The **element()** method provides a way to retrieve the stored information
- class Edge
 - Another lightweight object storing an associated object the cost
 - The element() method provides a way to retrieve the cost of the edge
 - endpoints() method: returns a tuple (u, v) where u and v are the Vertex objects
 - opposite(v) method: assuming vertex v is one endpoint of an edge, return the other endpoint

The Graph ADT (cont'd)

• class Graph: can be either undirected or directed – flag provided to the constuctor

vertex_count()	returns the number of vertices of the graph		
vertices()	returns an iteration of all the vertices of the graph		
edge_count()	returns the number of edges of the graph		
edges()	returns an interation of all the edges of the graph		
<pre>get_edge(u,v)</pre>	returns the edge from vertex u to vertex v , if one exists, otherwise No		
degree(v)	returns the number of edges incident to vertex v		
<pre>incident_edges(v)</pre>	returns an iteration of all edges incident to vertex v		
<pre>insert_vertex(v, x=None)</pre>	create and return a new Vertex storing element x		
<pre>insert_edge(u,v, x=None)</pre>	create and return a new Edge from vertex u to vertex v , storing x		
remove_vertex(v)	remove vertex v and all its incident edges from the graph		
remove_edge(e)	remove edge e from the graph		

Data Structures for Graphs

Data Structures for Graphs

- Four data structures for representing a graph
 - 1. Edge list
 - 2. Adjacency list
 - 3. Adjacency map
 - 4. Adjacency matrix
- In each representation
 - Same: maintain a collection to store the vertices of a graph
 - Different: organize the edges

Edge List Structure

- In an edge list, we maintain
 - an unordered list *V* to store all vertex objects
 - an unordered list *E* to store all edge objects
- To support the methods of the Graph ADT, assume:

- Vertex

- A reference to element x to support the element() method
- A reference to the position of the vertex instance in the list V for efficient vertex removal
- Edge
 - A reference to element *x*, to support the element() method
 - A reference to the position of the edge instance in list *E* for efficient edge removal
 - References to the vertex objects associated with the endpoints of *e*

Edge List Structure (cont'd)

- In an edge list, we maintain
 - an unordered list *V* to store all vertex objects
 - an unordered list *E* to store all edge objects
- A very simple structure, though not very efficient:
 - locating a particular edge (u, v) traversing the entire edge list
 - obtaining the set of all edges incident to a vertex v again, traverse then entire edge list

Edge List Structure – Performance

- Space usage
 - O(n + m) for a graph with *n* vertices and m edges
 - Assuming each individual vertex or edge uses O(1) space
 - The lists *V* and *E* use space proportional to their number of entries

Edge List Structure – Performance (cont'd)

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	<i>O</i> (1)
vertices()	O(n)
edges()	O(m)
<pre>get_edge(u,v), degree(v), incident_edges(v)</pre>	O(m)
insert_vertex(x), insert_edge(u,v,x), remove_edge(e)	<i>O</i> (1)
remove_vertex(v)	O(m)

- get_edge(u, v), degree(v), incident_edges(v) could be implemented more efficiently than O(m)
- remove_vertex(v) also entails removing all the edges incident to v otherwise the edges would point to a non-existing vertex of the graph – hence O(m)

Adjacency List Structure

- In an adjacency list, we maintain
 - For each vertex, a separate list containing those edges tha are incident to the vertex
- To support the methods of the Graph ADT, assume:

- Vertex

- A reference to element *x* to support the element() method
- A reference to the position of the vertex instance in the list V for efficient vertex removal
- A list *I*(*v*) the incidence list of *v* containing the edges that are incident to *v*
- Edge
 - A reference to element *x*, to support the element() method
 - References to the vertex objects associated with *e*'s endpoints
 - References to the positions of the edge instance in lists *I(u)* and *I(v)* – for efficient edge removal

Adjacency List Structure (cont'd)

- In an adjacency list, we maintain
 - For each vertex, a separate list containing those edges tha are incident to the vertex
- Benefits compared to the edge list
 - The *I*(*v*) list of each node *v* contains exactly the edges that should be reported by incident_edges(v)
 - Iterate I(v) in O(deg(v)) time instead of iterating the full edge list – the best possible outcome for any graph representation, since there are deg(v) edges to report

Adjacency List Structure - Performance

- Space usage: asymptotically, the same as the edge list structure
 - O(n + m) for a graph with *n* vertices and *m* edges
 - The primary vertex list uses O(n) space
 - The sum of all secondary lists containing the edges incident to each vertex is O(m)
 - An undirected edge (*u*, *v*) is referenced both in *I*(*u*) and in *I*(*v*), but its presence in the graph results only in a constant amount of additional space

Adjacency List Structure – Performance (cont'd)

Operation	Running Time
<pre>vertex_count(), edge_count()</pre>	O(1)
vertices()	O(n)
edges()	O(m)
$get_edge(u,v)$	$O(\min(\deg(u), \deg(v)))$
degree(v)	O(1)
incident_edges(v)	$O(\deg(v))$
insert_vertex(x), insert_edge(u,v,x)	O(1)
remove_edge(e)	O(1)
remove_vertex(v)	$O(\deg(v))$

- $get_edge(u,v)$ we can look for the edge in either the list of u or that of v take the shortest
- Because we are storing the positions of e in I(u) and I(v), removing an edge takes O(1) time
- To remove a vertex v we need to also remove all its incident edges but there are all in I(v), so remove_vertex(v) runs in O(deg(v)) time

Adjacency Map Structure

- In an adjacency map, we maintain
 - For each vertex v, a separate hash-map
 - Each entry has as key the vertex that is opposite to *v*, and as value the edge which has *u* and *v* as endpoints
- To support the methods of the Graph ADT, assume:
 - Vertex
 - A reference to element *x* to support the element() method
 - A reference to the position of the vertex instance in the list V for efficient vertex removal
 - A hashmap I(v) containing (vertex, edge) pairs where the vertices are the opposites of v and the edges are the edges incident to v
 - Edge
 - A reference to element *x*, to support the element() method
 - References to the vertex objects associated with *e*'s endpoints

Adjacency Map Structure

- In an adjacency map, we maintain
 - For each vertex v, a separate hash-map
 - Each entry has as key the vertex that is opposite to *v*, and as value the edge which has *u* and *v* as endpoints
- Benefits compared to the adjacency list
 - get_edge(u,v) can be implemented in expected O(1) time by searching for vertex u as a key in I(v) or vice-versa
 - this is better than in the adjacency list case, where the best case performance was $O(\min(\deg(u), \deg(v)))$

Adjacency Map Structure - Performance

• Space usage

- O(n+m), just like the adjacency list
- For each vertex u, I(u) an adjacency map uses $O(\deg(u))$ space

Adjacency Map Structure – Performance (cont'd)

Operation	Edge List	Adj. List	Adj. Map
vertex_count()	O(1)	O(1)	<i>O</i> (1)
edge_count()	<i>O</i> (1)	O(1)	O(1)
vertices()	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)
$get_edge(u,v)$	O(m)	$O(\min(d_u, d_v))$	$O(1) \exp$.
degree(v)	O(m)	<i>O</i> (1)	<i>O</i> (1)
$incident_edges(v)$	O(m)	$O(d_v)$	$O(d_v)$
$insert_vertex(x)$	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
remove_vertex(v)	O(m)	$O(d_v)$	$O(d_v)$
$insert_edge(u,v,x)$	<i>O</i> (1)	<i>O</i> (1)	$O(1) \exp$.
remove_edge(e)	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.

- d_v the degree of v
- an adjacency map achieves essentially optimal running times for all methods, making in an excellent all-purpose choice as a graph representation structure

Adjacency Matrix Structure

- In an adjacency matrix structure, we maintain
 - An $n \times n$ matrix A of edges, storing references to edges
 - *A*[*i*, *j*] stores a reference to the edge (*u*, *v*) if it exists, where *u* is the vertex with index *i* and *v* is the vertex with index *j*
 - if there is no such edge, then A[i,j] = None
 - A is symmetric if the graph is undirected
 - An edge between a given pair of vertices can be retrieved in worst-case constant time

Adjacency Matrix Structure - Performance

- Space usage
 - $O(n^2)$ space, much worse than the O(n + m) needed for the other three structures
 - Although if the graph is dense the number of edges is proportional to $O(n^2)$
 - In practice, most real-word graphs are sparse making the adjacency matrix structure inefficient, since it will store many None values
 - If a graph is dense, a adjacency matrix might be more efficient then an adjacency list or map
 - Particularly if edges have no auxiliary data, then an adjacency matrix can be implemented using a Boolean matrix, using 1 bit to store information about each edge slot, e.g. A[i, j] = True if and only if (u, v) is an edge in the graph

Adjacency Matrix Structure – Performance (cont'd)

Operation	Edge List	Adj. List	Adj. Map	Adj. Matrix
vertex_count()	O(1)	O(1)	O(1)	<i>O</i> (1)
edge_count()	O(1)	O(1)	O(1)	<i>O</i> (1)
vertices()	O(n)	O(n)	O(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
$get_edge(u,v)$	O(m)	$O(\min(d_u, d_v))$	O(1) exp.	<i>O</i> (1)
degree(v)	O(m)	<i>O</i> (1)	<i>O</i> (1)	O(n)
incident_edges(v)	O(m)	$O(d_v)$	$O(d_v)$	O(n)
insert_vertex(x)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	$O(n^2)$
remove_vertex(v)	O(m)	$O(d_v)$	$O(d_v)$	$O(n^2)$
insert_edge(u,v,x)	<i>O</i> (1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)
remove_edge(e)	O(1)	<i>O</i> (1)	O(1) exp.	<i>O</i> (1)

- get_edge(u,v) is an O(1) operation
- Several operations are less efficient:
 - degree(v), incident_edges(v) we need to examine all n entries in the row associated with vertex v O(n)
 - insert_vertex(v), remove_vertex(v) the matrix has to be resized $O(n^2)$

Python Implementation – using an Adjacency Map variant

- Use a Python dictionary to represent each secondary incidence map, I(v)
- Use a top-level dictionary D to map each vertex v to its incidence map, I(v)
- All the vertices of the graph can be obtained by iterating over the keys of *D*
- This frees us from having to keep indices for the position of the vertices in the Vertex
- Also, rather than maintaining a separate list of edges, the edges can be found in O(n + m) time by taking the union of the edges found in all the incidence maps

Vertex class

```
#------ nested Vertex class ------
 1
 2
     class Vertex:
       """ Lightweight vertex structure for a graph."""
 3
        __slots__ = '_element'
4
 5
       def __init__(self, x):
6
         """ Do not call constructor directly. Use Graph's insert_vertex(x)."""
 7
         self._element = x
 8
 9
       @property
       def element(self):
10
         """ Return element associated with this vertex."""
11
12
         return self._element
13
       def __hash __(self):
14
                                    \# will allow vertex to be a map/set key
         return hash(id(self))
15
```


slots

- By default Python represents each namespace with an instance dictionary of the built-in dict class- this maps identifying names in the scope to the associated objects
- While a dictionary structure supports relatively efficient name lookups, it requires additional memory beyond the raw data that it stores.
- Python provides a more direct mechanism for representing instance namespaces, that avoids the use of an auxiliary dictionary.
- To streamline the representation for all instances of a class, the class should define a class-level member named <u>slots</u> that is assigned a fixed sequence of strings that serve as names for instance variables
- Advisable in particular in any nested classes that are expected to have many instances

init

- Whenever an instance of the Vertex class is created using a statement of the type v = Vertex("A"), a special method called __init__ is called
- ___init___ serves as the constructor of the class
- It is responsible primarily for establishing the state of the new object e.g. set up the _element instance variable in the case of Vertex, set up the _origin, _destination and _element in the case of Edge
- By convention a single leading underscore in the name of a data member, such as _element implies that it is intended as nonpublic; users of a class should not directly access such members

@property

- **@property** is a decorator which indicates that the element(self) method is a "getter" method, and that the name of the property is the method name only e.g. only element
- A decorator is a function which receives another function as an argument
- The behavior of the argument function is extended by the decorator without actually modifying it
- The element of a vertex can then be obtained using x.element
- There is also a corresponding way of creating a setter using the @f.setter decorator

@element.setter
def element(self, el):
 self._element = el

hash

- Standard Python mechanism for computing hash codes hash(x) returns an integer value that serves as a hash code for object x
- Only immutable data types are hashable in Python to ensure that the object's hash code remains constant during the lifetime of the object
 - It an object is inserted into a hash table, and then its hash code would change, then a different object would be retrieved from the hash table
- Instances of user-defined classes are unhashable by default
- A function that computes the hash code can be implemented via the <u>hash</u> method within the class
- Also, if x == y, then hash(x) == hash(y)


```
17
                            #----- nested Edge class ------
                      18
                            class Edge:
                      19
                              """ Lightweight edge structure for a graph."""
Edge Class
                      20
                              __slots__ = '_origin', '_destination', '_element'
                      21
                      22
                              def ___init ___(self, u, v, x):
                                """ Do not call constructor directly. Use Graph's insert_edge(u,v,x)."""
                      23
                      24
                                self._origin = u
                      25
                                self._destination = v
                      26
                                self._element = x
                      27
                      28
                              def endpoints(self):
                      29
                                """ Return (u,v) tuple for vertices u and v."""
                      30
                                return (self._origin, self._destination)
                      31
                      32
                              def opposite(self, v):
                                """ Return the vertex that is opposite v on this edge."""
                      33
                                return self._destination if v is self._origin else self._origin
                      34
                      35
                              def element(self):
                      36
                      37
                                """ Return element associated with this edge."""
                      38
                                return self._element
                      39
                      40
                              def __hash __(self):
                                                           \# will allow edge to be a map/set key
                                return hash( (self._origin, self._destination) )
                      41
```

raphs | 43

self

- self identifies the instance upon which a method is invoked
- self is also used to store the instance variables that reflect its current state
- self._element refers to an instance variable named _element that is stored as part of that particular Vertex's state
- There is a difference between a method signature as declared within a class vs. that used by a caller:
 - E.g. from the user's perspective the opposite() method takes one parameter, the Vertex v, while endpoints() takes no parameters
 - However, within the class definition self in an explicit parameter, making opposite() have two parameters, and endpoints() one parameter
- The Python interpreter will automatically bind the instance upon which the method is invoked to the self parameter

Graph Class, part 1

1	class Graph:
2	""" Representation of a simple graph using an adjacency map."""
3	
4	definit(self, directed=False):
5	""" Create an empty graph (undirected, by default).
6	
7	Graph is directed if optional paramter is set to True.
8	11 11
9	selfoutgoing = $\{ \}$
10	# only create second map for directed graph; use alias for undirected
11	selfincoming = $\{ \}$ if directed else selfoutgoing
12	
13	def is_directed(self):
14	""" Return True if this is a directed graph; False if undirected.
15	
16	Property is based on the original declaration of the graph, not its contents.
17	
18	return selfincoming is not selfoutgoing $\#$ directed if maps are distinct
19	
20	def vertex_count(self):
21	"""Return the number of vertices in the graph."""
22	return len(selfoutgoing)
23	
24	def vertices(self):
25	"""Return an iteration of all vertices of the graph."""
26	return self outgoing.keys()
27	
28	def edge_count(self):
29	"""Return the number of edges in the graph."""
30	total = sum(len(selfoutgoing[v]) for v in selfoutgoing)
31	# for undirected graphs, make sure not to double-count edges
32	return total if self.is_directed() else total // 2
33	
34	def edges(self):
35	"""Return a set of all edges of the graph."""
36	result = set() # avoid double-reporting edges of undirected graph
37 38	<pre>for secondary_map in selfoutgoing.values():</pre>
	result.update(secondary_map.values()) # add edges to resulting set

Python Generators

- The most convenient technique for creating iterators in Python is through the use of generators
- A generator is implemented with a syntax that is very similar to a function, but instead of returning values, a yield statement is executed to indicate each element of a sequence
- It is illegal to combine return and yield statements in the same implementation
- Lazy evaluation: the results are only computed if requested, the entire sequence need not reside in memory at one time generators can produce infinite sequences of values
- Generator comprehensions do not create temporary lists

Graph Class, part 2

40	def get_edge(self , u, v):
41	""" Return the edge from u to v, or None if not adjacent."""
42	return selfoutgoing[u].get(v) # returns None if v not adjacent
43	
44	def degree(self, v, outgoing=True):
45	""" Return number of (outgoing) edges incident to vertex v in the graph.
46	
47	If graph is directed, optional parameter used to count incoming edges.
48	
49	adj = self outgoing if outgoing else self incoming
50	return len(adj[v])
51	
52	<pre>def incident_edges(self, v, outgoing=True):</pre>
53	"""Return all (outgoing) edges incident to vertex v in the graph.
54	
55	If graph is directed, optional parameter used to request incoming edges.
56	
57	adj = self outgoing if outgoing else self incoming
58	for edge in adj[v].values():
59	yield edge
60	
61	def insert_vertex(self, x=None):
62	"""Insert and return a new Vertex with element x."""
63	v = self.Vertex(x)
64	$self_{-}outgoing[v] = \{ \}$
65	if self.is_directed():
66	selfincoming[v] = $\{ \}$ # need distinct map for incoming edges
67	return v
68	
69	def insert_edge(self, u, v, x=None):
70	"""Insert and return a new Edge from u to v with auxiliary element x."""
71	e = self.Edge(u, v, x)
72	selfoutgoing[u][v] = e
73	$self_{}incoming[v][u] = e$

Thank you.

