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Co-authorship Graph — undirected graph
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Figure 2 Co-authorship graph of NiMCS and related research. Nodes represent authors; edges represent co-authorship. Graph layout uses the
ForceAtlas2 algorithm. Clusters are calculated via Louvain modularity and delineated by color. Frequency of co-authorship is calculated via
Eigenvector centrality and represented by size.

Image from Alex Garnett, Grace Lee and Judy llles. 2013. Publication trends in
neuroimaging of minimally conscious states. Peerd.
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GermaNet Graph
- directed graph
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City Map - mixed graph
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Internet —
undirected graph
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https://en.wikipedia.org/wiki/Information_visualization

Mixed graph
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Graphs

« Agraph G is a set V of vertices — together G
with a collection E of pairwise connections

between vertices from V, called edges 0 Q

« Graphs are a way of representing

relationships that exist between pairs of ° Q
objects

» Edges in a graph are either directed or
undirected

- An edge (u,v) is directed from u to v if @ :@
the pair (u, v) is ordered, with u

preceding v
- An edge (u, v) is undirected if the pair
(u,v) is not ordered @ @

RRRRRRRRRRRR
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Types of Graphs

« undirected graph: all the
edges in the graph are
undirected

« directed graph (digraph):
all the edges in the graph
are directed

* mixed graph: has both
directed and undirected

edges
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Graph Terminology

« Two vertices joined by an edge are called the end
vertices/endpoints of the edge

- u and v are the endpoints of edge 1

« Two vertices u and v are adjacent if there is an edge whose
end vertices are u and v

- v and x are adjacent

« An edge is called incident to a vertex if the vertex is one of
the edge’s endpoints

- edges 1, 2 and 4 are incident to v

« The degree of a vertex, deg(v), is the number of incident
edges of v: v has degree 3

« Edges with the same endpoints are called parallel edges:
- 8 and 9 are parallel edges

« An edge is a self-loop is its two endpoints coincide:
- 10 is a self-loop

UNIVERSITAT @
TUBINGEN 7
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Graph Terminology (cont’d)

« A path is a sequence of alternating edges
and vertices that

- Starts with a vertex
- Ends with a vertex

- Each edge is incident to its predecessor
and successor vertex

» A path is simple if each vertex in the path
is distinct
« Examples of paths
- P, =(V,b,X,h,Z) is a simple path

- P, =(U,c,W,e,X,g,Y,f,W,d,V) nota
simple path because W appears twice

RRRRRRRRRRRR
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Graph Terminology (cont’d)

* A cycle is a path that
- Starts and ends at the same vertex

- Includes at least one edge
» A cycle is simple if all its vertices are
distinct, except for the first and the last
vertex

« Examples of cycles
-C;=W,b,X,9,Y,f,W,c,U,a,V)is a
simple cycle
-C,=WU,c,W,e,X,g,Y,f, W,d,V,a,U)is
not a simple cycle because C, goes
twice through W

RRRRRRRRRRRR
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Graph Terminology (cont’d)

* A vertex u reaches a vertex v, and v is reachable from
u if there is a path fromu to v G

- ureaches y in G4
- udoes notreach b in G ° Q
« A graph is connected if for any two vertices there is a Q
path between them °

- G4 and G, are connected graphs

- G is not a connected graph ’
« A subgraph of a graph of ¢ is a graph whose vertices Q
and edges are subsets of the vertices and edges of ¢ e
- 1 and G, are subgraphs of G
« If a graph is not connected, its maximal connected G G

subgraphs are called the connected components of G
- G and G, are the connected components of ¢

UNIVERSITAT
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Graph Terminology (cont’d)

® o @
)
 a spanning subgraph of a graph G is a @ % @ © ®
subgraph of ¢ containing all the vertices of G ) @
@ @ @ 9 ¢
 Aforest is a disconnected graph without forest
cycles © e ©
« Atree is a connected forest — that is — a ® ®
connected graph without cycles
| | | @ o @
« A spanning tree of a graph is a spanning Q@ ® Q ®
subgraph that is a tree ®
® © @
@ ©) ® @ @ w 9 ¢
©) @ @ @ @ @ ® tree )
© © S
® ®
© © ®
spanning subgraph spanning tree
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Graph Properties

* Property 1. If G is a graph with m edges and vertex set V, then

z deg(v) = 2m

vEeV

« Justification. Any edge (u, v) is counted twice in the summation:

- Once for its endpoint u
- Once for its endpoint v

» The total contribution of the edges to the degrees of the vertices is twice the number of
edges.

UNIVERSITAT
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Graph Properties (cont’d)

* Property 2. If G is a simple undirected graph with n vertices and m edges, then

- nn—1)
2
« Justification. G is simple, meaning that —

- there are no edges that have the same endpoints (no parallel edges)
- there are no self-loops
- then the maximum degree of a vertex in G isn — 1

n(n—1)

- according to property 1, 2m <n(n—1) > m <

UNIVERSITAT
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The Graph ADT
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The Graph ADT

« Agraph is a collection of vertices and edges

« Can be modelled as a combination of three data types: Vertex, Edge and Graph

e class Vertex

- Lightweight object storing the information provided by the user

- The element() method provides a way to retrieve the stored information
« class Edge

- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge
- endpoints() method: returns a tuple (u, v) where u and v are the Vertex objects

- opposite(v) method: assuming vertex v is one endpoint of an edge, return the
other endpoint

RRRRRRRRRRRRR
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The Graph ADT (cont’d)

« class Graph: can be either undirected or directed — flag provided to the constuctor

vertex_count()

returns the number of vertices of the graph

vertices()

returns an iteration of all the vertices of the graph

edge_count()

returns the number of edges of the graph

edges()

returns an interation of all the edges of the graph

get_edge(u,Vv)

returns the edge from vertex u to vertex v, if one exists, otherwise None

degree(v)

returns the number of edges incident to vertex v

incident_edges(v)

returns an iteration of all edges incident to vertex v

insert_vertex(v, x=None)

create and return a new Vertex storing element x

insert_edge(u,v, x=None)

create and return a new Edge from vertex u to vertex v, storing x

remove_vertex(v)

remove vertex v and all its incident edges from the graph

remove_edge(e)

RRRRRRRRRRRR
UNIVERSITAT 9
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remove edge e from the graph
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Data Structures for Graphs
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Data Structures for Graphs

 Four data structures for representing a graph

1. Edge list

2. Adjacency list

3. Adjacency map

4. Adjacency matrix

* In each representation

- Same: maintain a collection to store the vertices of a graph

- Different: organize the edges

UNIVERSITAT
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Edge List Structure

* In an edge list, we maintain
- an unordered list VV to store all vertex objects
- an unordered list E to store all edge objects

 To support the methods of the Graph ADT, assume:
- Vertex

» Areference to element x to support the element() method

« Areference to the position of the vertex instance in the list V — for
efficient vertex removal

- Edge

» Areference to element x, to support the element() method

» Areference to the position of the edge instance in list E — for efficient
edge removal

» References to the vertex objects associated with the endpoints of e

EEEEEEEEEEE
UNIVERSITAT
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Edge List Structure (cont’d)

* In an edge list, we maintain
- an unordered list VV to store all vertex objects
- an unordered list E to store all edge objects

» A very simple structure, though not very efficient: 4 f N h @
- locating a particular edge (u, v) - traversing the entire edge list

- obtaining the set of all edges incident to a vertex v — again,
traverse then entire edge list

e
(

UNIVERSITAT
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Edge List Structure — Performance

» Space usage

- O(n + m) for a graph with n vertices and m edges
- Assuming each individual vertex or edge uses 0(1) space
- The lists VV and E use space proportional to their number of entries

UNIVERSITAT
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Edge List Structure — Performance (cont’d)

Operation Running Time
vertex_count( ), edge_count() (1)
vertices( ) n)
edges( ) m)

get_edge(u,v), degree(v), incident_edges(v)
insert_vertex(x), insert_edge(u,v,x), remove_edge(e)
remove_vertex(v)

SIS
S

3

get_edge(u, v), degree(v), incident_edges(v) could be implemented more efficiently than O(m)

remove_vertex(v) also entails removing all the edges incident to v — otherwise the edges would point
to a non-existing vertex of the graph — hence 0(m)

UNIVERSITAT &
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Adjacency List Structure

* In an adjacency list, we maintain

- For each vertex, a separate list containing those edges tha
are incident to the vertex

 To support the methods of the Graph ADT, assume:
- Vertex

» Areference to element x to support the element() method
» Areference to the position of the vertex instance in the list V —
for efficient vertex removal
» Alist I(v) — the incidence list of v — containing the edges that
are incident to v
- Edge

» Areference to element x, to support the element() method

» References to the vertex objects associated with e’s endpoints

» References to the positions of the edge instance in lists I(u)
and I(v) — for efficient edge removal

EEEEEEEEEEE
UNIVERSITAT
TUBINGEN

e 8
1% w
v

e

Graphs | 26



Adjacency List Structure (cont’d)

* In an adjacency list, we maintain

- For each vertex, a separate list containing those edges tha e 8
are incident to the vertex
. | v W—
» Benefits compared to the edge list f h
- The I(v) list of each node v contains exactly the edges that
should be reported by incident_edges(v) 1%

- lterate I(v) in O(deg(v)) time instead of iterating the full
edge list — the best possible outcome for any graph
representation, since there are deg(v) edges to report —

e

RRRRRRRRRRRRR
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Adjacency List Structure - Performance

« Space usage: asymptotically, the same as the edge list structure

- O(n + m) for a graph with n vertices and m edges
- The primary vertex list uses 0(n) space

- The sum of all secondary lists containing the edges incident to each vertex is 0(m)

« An undirected edge (u, v) is referenced both in I(u) and in I(v), but its presence in the
graph results only in a constant amount of additional space

UNIVERSITAT
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Adjacency List Structure — Performance (cont’d)

Operation Running Time
vertex_count( ), edge_count() o(1)

vertices( ) O(n)

edges( ) O(m)

get_edge(u,v) O(min(deg(u),deg(v)))
degree(v) o(1)
incident_edges(v) O(deg(v))
insert_vertex(x), insert_edge(u,v,x) | O(1)

remove_edge(e) o(1)

remove_vertex(v) O(deg(v))

get_edge(u,Vv) — we can look for the edge in either the list of u or that of v — take the shortest

« Because we are storing the positions of e in I(u) and I(v), removing an edge takes 0(1) time

« To remove a vertex v we need to also remove all its incident edges — but there are all in I(v), so
remove_vertex(v) runs in 0(deg(v)) time

RRRRRRRRRRRR
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Adjacency Map Structure

 In an adjacency map, we maintain
- For each vertex v, a separate hash-map

- Each entry has as key the vertex that is opposite to v, and as
value the edge which has u and v as endpoints

 To support the methods of the Graph ADT, assume:

- Vertex

» Areference to element x to support the element() method

» Areference to the position of the vertex instance in the list V — for
efficient vertex removal

* A hashmap I(v) — containing (vertex, edge) pairs where the vertices

are the opposites of v and the edges are the edges incident to v
- Edge

» Areference to element x, to support the element() method
» References to the vertex objects associated with e’s endpoints

EEEEEEEEEE B
UNIVERSITAT ¢
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Adjacency Map Structure

 In an adjacency map, we maintain

- For each vertex v, a separate hash-map e 8
- Each entry has as key the vertex that is opposite to v, and as y ¥ W @
value the edge which has u and v as endpoints
« Benefits compared to the adjacency list V S,
vV W
- get_edge(u,Vv) can be implemented in expected 0(1) time by W ¥ ¥
searching for vertex u as a key in I(v) or vice-versa %
u w
- this is better than in the adjacency list case, where the best case —()—= ¥ }
e

performance was O(min(deg(u), deg(v)))

UNIVERSITAT
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Adjacency Map Structure - Performance

» Space usage

- O0(n + m), just like the adjacency list

- For each vertex u, I(u) - an adjacency map uses 0(deg(u)) space

UNIVERSITAT
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Adjacency Map Structure — Performance (cont’d)

Operation Edge List | Adj. List Adj. Map
vertex_count() O(1) O(1) o(1)
edge_count( ) O(1) O(1) o(1)
vertices( ) O(n) O(n) O(n)
edges( ) O(m) O(m) O(m)
get_edge(u,v) O(m) O(min(d,,d,)) | O(1) exp
degree(v) O(m) O(1) o(1)
incident_edges(v) | O(m) Oo(d,) o(d,)
insert_vertex(x) O(1) O(1) o(1)
remove_vertex(v) | O(m) 0O(d,) o(d,)
insert_edge(u,v,x) | O(1) O(1) O(1) exp
remove_edge(e) O(1) O(1) O(1) exp

d, - the degree of v
« an adjacency map achieves essentially optimal running times for all methods, making in an
excellent all-purpose choice as a graph representation structure

EEEEEEEEEE an
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Adjacency Matrix Structure

 In an adjacency matrix structure, we maintain
- An n X n matrix A of edges, storing references to
edges

- A[i, j] stores a reference to the edge (u,v) if it
exists, where u is the vertex with index i and v is
the vertex with index j

« if there is no such edge, then A[i,j] = None
- A is symmetric if the graph is undirected 0

Q|

- An edge between a given pair of vertices can be
retrieved in worst-case constant time

oQ

NS < S
W N = O
oQ
oy
=

UNIVERSITAT
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Adjacency Matrix Structure - Performance

» Space usage

- 0(n®) space, much worse than the O(n + m) needed for the other three structures
- Although if the graph is dense the number of edges is proportional to 0(n?)

- In practice, most real-word graphs are sparse — making the adjacency matrix structure
inefficient, since it will store many None values

- If a graph is dense, a adjacency matrix might be more efficient then an adjacency list
or map

- Particularly if edges have no auxiliary data, then an adjacency matrix can be
implemented using a Boolean matrix, using 1 bit to store information about each edge
slot, e.g. Ali, j] = True if and only if (u, v) is an edge in the graph

UNIVERSITAT
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Adjacency Matrix Structure — Performance (cont’d)

Operation Edge List | Adj. List Adj. Map | Adj. Matrix
vertex_count() O(1) O(1) O(1) o(1)
edge_count() O(1) O(1) o(1) o(1)
vertices( ) O(n) O(n) O(n) O(n)
edges() O(m) O(m) O(m) O(m)
get_edge(u,v) O(m) O(min(d,,d,)) | O(1) exp. | O(1)
degree(v) O(m) o(1) Oo(1) O(n)
incident_edges(v) | O(m) 0(d,) o(d,) O(n)
insert_vertex(x) O(1) O(1) o(1) O(n?)
remove_vertex(v) | O(m) 0(d,) o(d,) O(n?)
insert_edge(u,v,x) | O(1) o(1) O(1) exp. | O(1)
remove_edge(e) O(1) O(1) O(1) exp. | O(1)

get_edge(u,Vv) is an 0(1) operation
« Several operations are less efficient:
degree(v), incident_edges(v) — we need to examine all n entries in the row associated
with vertex v — 0(n)
insert_vertex(v), remove_vertex(v) —the matrix has to be resized - 0(n?)

UNIVERSITAT &
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Python Implementation — using an Adjacency Map variant

« Use a Python dictionary to represent each secondary incidence map, I(v)

« Use a top-level dictionary D to map each vertex v to its incidence map, I(v)

« All the vertices of the graph can be obtained by iterating over the keys of D

* This frees us from having to keep indices for the position of the vertices in the Vertex

 Also, rather than maintaining a separate list of edges, the edges can be found in O(n +
m) time by taking the union of the edges found in all the incidence maps

UNIVERSITAT
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Vertex class

1 e nested Vertex class ---——--—-——-—————e——-

2  class Vertex:

3 """ Lightweight vertex structure for a graph.”"”

4 __slots__ = '_element'

5

6 def __init__(self, x):

7 """ Do not call constructor directly. Use Graph's insert_vertex(x)."""
8 self. _element = x

9 @property
10 def element(self):
11 """ Return element associated with this vertex."""
12 return self._element
13
14 def __hash__(self): # will allow vertex to be a map/set key
15 return hash(id(self))

RRRRRRRRRRRR
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__slots

» By default Python represents each namespace with an instance dictionary of the built-in
dict class- this maps identifying names in the scope to the associated objects

« While a dictionary structure supports relatively efficient name lookups, it requires
additional memory beyond the raw data that it stores.

« Python provides a more direct mechanism for representing instance namespaces, that
avoids the use of an auxiliary dictionary.

 To streamline the representation for all instances of a class, the class should define a
class-level member named _ slots  that is assigned a fixed sequence of strings that
serve as names for instance variables

» Advisable in particular in any nested classes that are expected to have many instances

UNIVERSITAT
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__Init__

* Whenever an instance of the Vertex class is created using a statement of the type v =
Vertex(“A”), a special method called __init__ is called

« _init__ serves as the constructor of the class

* It is responsible primarily for establishing the state of the new object — e.g. set up the
_element instance variable in the case of Vertex, set up the _origin, _destination and
_element in the case of Edge

« By convention a single leading underscore in the name of a data member, such as
_element implies that it is intended as nonpublic; users of a class should not directly
access such members

UNIVERSITAT
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@property

* @property is a decorator which indicates that the element(self) method is a “getter”
method, and that the name of the property is the method name only — e.g. only element

» A decorator is a function which receives another function as an argument

» The behavior of the argument function is extended by the decorator without actually
modifying it

* The element of a vertex can then be obtained using x.element

* There is also a corresponding way of creating a setter using the @f.setter decorator

@element.setter
def element(self, el):
self. element = el

UNIVERSITAT
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__hash__

« Standard Python mechanism for computing hash codes — hash(x) returns an integer
value that serves as a hash code for object x

« Only immutable data types are hashable in Python — to ensure that the object’s hash code
remains constant during the lifetime of the object

- It an object is inserted into a hash table, and then its hash code would change, then a
different object would be retrieved from the hash table
* Instances of user-defined classes are unhashable by default

« A function that computes the hash code can be implemented via the _ hash  method
within the class

- The returned hash code should reflect the immutable attributes of an instance (e.g.
_element would not make for a good attribute for hashing, it might be updated)
* Also, if x ==y, then hash(x) == hash(y)

UNIVERSITAT
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Edge Class
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nested Edge class

class Edge:

Lightweight edge structure for a graph.
__slots__ = '_origin', '_destination', '_element'

def __init__(self, u, v, x):
""" Do not call constructor directly. Use Graph's insert_edge(u,v,x).
self. origin = u
self._destination = v
self. _element = x

def endpoints(self):
""" Return (u,v) tuple for vertices u and v.
return (self._origin, self._destination)

def opposite(self, v):
""" Return the vertex that is opposite v on this edge.
return self._destination if v is self. origin else self. origin

def element(self):
""" Return element associated with this edge.
return self._element

def __hash__(self): # will allow edge to be a map/set key
return hash( (self._origin, self._destination) )
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self

* self identifies the instance upon which a method is invoked
» self is also used to store the instance variables that reflect its current state

* self._element refers to an instance variable named _element that is stored as part of that
particular Vertex's state

» There is a difference between a method signature as declared within a class vs. that used
by a caller:

- E.g. from the user’s perspective the opposite() method takes one parameter, the
Vertex v, while endpoints() takes no parameters

- However, within the class definition self in an explicit parameter, making opposite()
have two parameters, and endpoints() one parameter

* The Python interpreter will automatically bind the instance upon which the method is
invoked to the self parameter
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Graph Class,
part 1
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class Graph:
""" Representation of a simple graph using an adjacency map.

def __init__(self, directed=False):
""" Create an empty graph (undirected, by default).

Graph is directed if optional paramter is set to True.

self._outgoing = { }
# only create second map for directed graph; use alias for undirected
self._incoming = { } if directed else self._outgoing

def is_directed(self):
""" Return True if this is a directed graph; False if undirected.

Property is based on the original declaration of the graph, not its contents.

return self._incoming is not self._outgoing # directed if maps are distinct

def vertex_count(self):
""" Return the number of vertices in the graph.
return len(self._outgoing)

def vertices(self):
""" Return an iteration of all vertices of the graph.”"”
return self._outgoing.keys()

def edge_count(self):
""" Return the number of edges in the graph.”""
total = sum(len(self._outgoing[v]) for v in self._outgoing)
# for undirected graphs, make sure not to double-count edges
return total if self.is_directed( ) else total // 2

def edges(self):
""" Return a set of all edges of the graph.
result = set( ) # avoid double-reporting edges of undirected graph
for secondary_map in self._outgoing.values():
result.update(secondary_map.values()) # add edges to resulting set
return result
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Python Generators
« The most convenient technique for creating iterators in Python is through the use of
generators

« A generator is implemented with a syntax that is very similar to a function, but instead of
returning values, a yield statement is executed to indicate each element of a sequence

* It is illegal to combine return and yield statements in the same implementation

 Lazy evaluation: the results are only computed if requested, the entire sequence need not
reside in memory at one time — generators can produce infinite sequences of values

« Generator comprehensions do not create temporary lists
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40  def get_edge(self, u, v):

41 """ Return the edge from u to v, or None if not adjacent.”"”"
42 return self._outgoing[u].get(v) # returns None if v not adjacent
Graph Class, 43
44 def degree(self, v, outgoing=True):
pal't 2 45 """ Return number of (outgoing) edges incident to vertex v in the graph.
46
47 If graph is directed, optional parameter used to count incoming edges.
48
49 adj = self._outgoing if outgoing else self._incoming
50 return len(adj[v])
51
52  def incident_edges(self, v, outgoing=True):
53 """ Return all (outgoing) edges incident to vertex v in the graph.
54
55 If graph is directed, optional parameter used to request incoming edges.
56
57 adj = self._outgoing if outgoing else self._incoming
58 for edge in adj|v].values():
59 yield edge
60
61  def insert_vertex(self, x=None):
62 """Insert and return a new Vertex with element x."""

63 v = self.Vertex(x)
64 self._outgoing[v] = { }
65 if self.is_directed():

66 self._incoming[v] = { } # need distinct map for incoming edges
67 return v

68

69  def insert_edge(self, u, v, x=None):

70 """ Insert and return a new Edge from u to v with auxiliary element x."""

71 e = self.Edge(u, v, x)
72 self._outgoing[u][v] = e
73 self._incoming|[v][u] = e
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Thank you.
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