
Corina Dima
corina.dima@uni-tuebingen.de

Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Graphs

Graphs | 2

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

14.1 Graphs
v The Graph ADT

14.2 Data Structures for Graphs
v Edge List Structure
v Adjacency List Structure
v Adjacency Map Structure
v Adjacency Matrix Structure

Co-authorship Graph – undirected graph

Graphs | 3

Image from Alex Garnett, Grace Lee and Judy Illes. 2013. Publication trends in
neuroimaging of minimally conscious states. PeerJ.

GermaNet Graph
- directed graph

Graphs | 4

From

http://www.sfs.uni-
tuebingen.de/lsd/documents/illustrations/
GernEdiT-screenshot-large.gif

http://www.sfs.uni-tuebingen.de/lsd/documents/illustrations/GernEdiT-screenshot-large.gif

City Map - mixed graph

Graphs | 5

Internet –
undirected graph

Graphs | 6

https://en.wikipedia.org/wiki/Information_visualization#/media/File:Internet_map_1024.jpg

https://en.wikipedia.org/wiki/Information_visualization

Graphs | 7

http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBerlin

http://dbpedia.org/page/Berlin

Mixed graph

http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FBerlin
http://dbpedia.org/page/Berlin

Graphs

• A graph ! is a set " of vertices – together
with a collection # of pairwise connections
between vertices from ", called edges

• Graphs are a way of representing
relationships that exist between pairs of
objects

• Edges in a graph are either directed or
undirected

- An edge (%, ') is directed from % to ' if
the pair (%, ') is ordered, with %
preceding '

- An edge (%, ') is undirected if the pair
(%, ') is not ordered

Graphs | 8

u v

u v

u

x

w

v

y

Types of Graphs

• undirected graph: all the
edges in the graph are
undirected

• directed graph (digraph):
all the edges in the graph
are directed

• mixed graph: has both
directed and undirected
edges

Graphs | 9

u

x

w

v

y

a

2

c

b

1

3

4

Graph Terminology
• Two vertices joined by an edge are called the end

vertices/endpoints of the edge
- " and # are the endpoints of edge 1

• Two vertices " and # are adjacent if there is an edge whose
end vertices are " and #
- # and % are adjacent

• An edge is called incident to a vertex if the vertex is one of
the edge’s endpoints

- edges 1, 2 and 4 are incident to #
• The degree of a vertex, deg(#), is the number of incident

edges of #: # has degree 3
• Edges with the same endpoints are called parallel edges:

- 8 and 9 are parallel edges
• An edge is a self-loop is its two endpoints coincide:

- 10 is a self-loop
Graphs | 10

xu

v

w

z

y

1

3

2

5
4

6

7

9

8

10

Graph Terminology (cont’d)

• A path is a sequence of alternating edges
and vertices that

- Starts with a vertex
- Ends with a vertex
- Each edge is incident to its predecessor

and successor vertex
• A path is simple if each vertex in the path

is distinct
• Examples of paths

- "# = (&, (,), ℎ, +) is a simple path
- "- = (., /,0, 1,), 2, 3, 4,0, 5, &) not a

simple path because 0 appears twice

Graphs | 11

P1
XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Graph Terminology (cont’d)

• A cycle is a path that
- Starts and ends at the same vertex
- Includes at least one edge

• A cycle is simple if all its vertices are
distinct, except for the first and the last
vertex

• Examples of cycles
- "# = %, ', (,), *, +,,, -, ., /, % is a

simple cycle
- "0 = (., -,,, 2, (,), *, +,,, 3, %, /, .) is

not a simple cycle because "0 goes
twice through ,

Graphs | 12

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

C2

Graph Terminology (cont’d)
• A vertex ! reaches a vertex ", and " is reachable from
! if there is a path from ! to v
- ! reaches $ in %&
- ! does not reach ' in %

• A graph is connected if for any two vertices there is a
path between them
- %& and %(are connected graphs
- % is not a connected graph

• A subgraph of a graph of % is a graph whose vertices
and edges are subsets of the vertices and edges of %
- %& and %(are subgraphs of %

• If a graph is not connected, its maximal connected
subgraphs are called the connected components of %
- %& and %(are the connected components of %

Graphs | 13

u

x

w

v

y

a

c

b

%&

%(

%

Graph Terminology (cont’d)

• a spanning subgraph of a graph ! is a
subgraph of ! containing all the vertices of !

• A forest is a disconnected graph without
cycles

• A tree is a connected forest – that is – a
connected graph without cycles

• A spanning tree of a graph is a spanning
subgraph that is a tree

Graphs | 14

a
b

c
d

i

e

f

g

h

v
p

q
u

r

y

x

w

t

z

s

forest

a
b

c
d

i

e

f

g

h

v
p

q
u

r

y

x

w

t

z

s

treei

e

f

g

h

spanning tree

d
c

e

b
a

d
c

e

b
a

spanning subgraph

Graph Properties

• Property 1. If ! is a graph with " edges and vertex set #, then

$
%∈'

deg + = 2"

• Justification. Any edge (/, +) is counted twice in the summation:

- Once for its endpoint /
- Once for its endpoint +

• The total contribution of the edges to the degrees of the vertices is twice the number of
edges.

Graphs | 15

Graph Properties (cont’d)

• Property 2. If ! is a simple undirected graph with " vertices and # edges, then

≤ " " − 1
2

• Justification. ! is simple, meaning that –

- there are no edges that have the same endpoints (no parallel edges)
- there are no self-loops
- then the maximum degree of a vertex in ! is " − 1
- according to property 1, 2# ≤ " " − 1 ⟹ # ≤))*+

,

Graphs | 16

The Graph ADT

Graphs | 17

The Graph ADT

• A graph is a collection of vertices and edges

• Can be modelled as a combination of three data types: Vertex, Edge and Graph

• class Vertex

- Lightweight object storing the information provided by the user
- The element() method provides a way to retrieve the stored information

• class Edge

- Another lightweight object storing an associated object - the cost
- The element() method provides a way to retrieve the cost of the edge
- endpoints() method: returns a tuple (", $) where " and $ are the Vertex objects
- opposite(v) method: assuming vertex $ is one endpoint of an edge, return the

other endpoint

Graphs | 18

The Graph ADT (cont’d)

• class Graph: can be either undirected or directed – flag provided to the constuctor

Graphs | 19

vertex_count() returns the number of vertices of the graph
vertices() returns an iteration of all the vertices of the graph
edge_count() returns the number of edges of the graph
edges() returns an interation of all the edges of the graph
get_edge(u,v) returns the edge from vertex ! to vertex ", if one exists, otherwise None
degree(v) returns the number of edges incident to vertex "
incident_edges(v) returns an iteration of all edges incident to vertex "
insert_vertex(v, x=None) create and return a new Vertex storing element #
insert_edge(u,v, x=None) create and return a new Edge from vertex ! to vertex ", storing #
remove_vertex(v) remove vertex " and all its incident edges from the graph
remove_edge(e) remove edge $ from the graph

Data Structures for Graphs

Graphs | 20

Data Structures for Graphs

• Four data structures for representing a graph

1. Edge list
2. Adjacency list
3. Adjacency map
4. Adjacency matrix

• In each representation

- Same: maintain a collection to store the vertices of a graph
- Different: organize the edges

Graphs | 21

Edge List Structure

• In an edge list, we maintain
- an unordered list ! to store all vertex objects
- an unordered list " to store all edge objects

• To support the methods of the Graph ADT, assume:
- Vertex

• A reference to element # to support the element() method
• A reference to the position of the vertex instance in the list ! – for

efficient vertex removal
- Edge

• A reference to element #, to support the element() method
• A reference to the position of the edge instance in list " – for efficient

edge removal
• References to the vertex objects associated with the endpoints of $

Graphs | 22

Edge List Structure (cont’d)

• In an edge list, we maintain
- an unordered list ! to store all vertex objects
- an unordered list " to store all edge objects

• A very simple structure, though not very efficient:
- locating a particular edge ($, &) - traversing the entire edge list
- obtaining the set of all edges incident to a vertex & – again,

traverse then entire edge list

Graphs | 23

Edge List Structure – Performance

• Space usage

- "($ + &) for a graph with $ vertices and m edges
- Assuming each individual vertex or edge uses " 1 space
- The lists) and * use space proportional to their number of entries

Graphs | 24

Edge List Structure – Performance (cont’d)

Graphs | 25

• get_edge(u, v), degree(v), incident_edges(v) could be implemented more efficiently than !(#)
• remove_vertex(v) also entails removing all the edges incident to v – otherwise the edges would point

to a non-existing vertex of the graph – hence !(#)

Adjacency List Structure

• In an adjacency list, we maintain
- For each vertex, a separate list containing those edges that

are incident to the vertex
• To support the methods of the Graph ADT, assume:

- Vertex
• A reference to element ! to support the element() method
• A reference to the position of the vertex instance in the list " –

for efficient vertex removal
• A list #(%) – the incidence list of % – containing the edges that

are incident to %
- Edge

• A reference to element !, to support the element() method
• References to the vertex objects associated with '’s endpoints
• References to the positions of the edge instance in lists #(()

and #(%) – for efficient edge removal

Graphs | 26

Adjacency List Structure (cont’d)

• In an adjacency list, we maintain
- For each vertex, a separate list containing those edges that

are incident to the vertex
• Benefits compared to the edge list

- The !(#) list of each node # contains exactly the edges that
should be reported by incident_edges(v)

- Iterate !(#) in %(deg #) time instead of iterating the full
edge list – the best possible outcome for any graph
representation, since there are deg(#) edges to report

Graphs | 27

Adjacency List Structure - Performance

• Space usage: asymptotically, the same as the edge list structure

- "($ + &) for a graph with $ vertices and & edges
- The primary vertex list uses "($) space
- The sum of all secondary lists containing the edges incident to each vertex is " &

• An undirected edge ((, *) is referenced both in +(() and in +(*), but its presence in the
graph results only in a constant amount of additional space

Graphs | 28

Adjacency List Structure – Performance (cont’d)

Graphs | 29

• get_edge(u,v) – we can look for the edge in either the list of ! or that of " – take the shortest
• Because we are storing the positions of # in $(!) and $("), removing an edge takes '(1) time
• To remove a vertex " we need to also remove all its incident edges – but there are all in $ " , so

remove_vertex(v) runs in ' deg " time

Adjacency Map Structure

• In an adjacency map, we maintain
- For each vertex !, a separate hash-map
- Each entry has as key the vertex that is opposite to !, and as

value the edge which has " and ! as endpoints
• To support the methods of the Graph ADT, assume:

- Vertex
• A reference to element # to support the element() method
• A reference to the position of the vertex instance in the list $ – for

efficient vertex removal
• A hashmap %(!) – containing (vertex, edge) pairs where the vertices

are the opposites of ! and the edges are the edges incident to !
- Edge

• A reference to element #, to support the element() method
• References to the vertex objects associated with (’s endpoints

Graphs | 30

Adjacency Map Structure

• In an adjacency map, we maintain
- For each vertex !, a separate hash-map
- Each entry has as key the vertex that is opposite to !, and as

value the edge which has " and ! as endpoints
• Benefits compared to the adjacency list

- get_edge(u,v) can be implemented in expected #(1) time by
searching for vertex " as a key in '(!) or vice-versa

- this is better than in the adjacency list case, where the best case
performance was #(min(deg " , deg v))

Graphs | 31

Adjacency Map Structure - Performance

Graphs | 32

• Space usage

- "($ + &), just like the adjacency list
- For each vertex u, *(+) - an adjacency map uses "(deg +) space

Adjacency Map Structure – Performance (cont’d)

Graphs | 33

• !" - the degree of v
• an adjacency map achieves essentially optimal running times for all methods, making in an

excellent all-purpose choice as a graph representation structure

Adjacency Matrix Structure

• In an adjacency matrix structure, we maintain
- An ! × ! matrix # of edges, storing references to

edges
- #[&, (] stores a reference to the edge *, + if it

exists, where * is the vertex with index & and + is
the vertex with index (

• if there is no such edge, then A[i,j] = None
- # is symmetric if the graph is undirected
- An edge between a given pair of vertices can be

retrieved in worst-case constant time

Graphs | 34

Adjacency Matrix Structure - Performance

Graphs | 35

• Space usage

- "($%) space, much worse than the "($ + () needed for the other three structures
- Although if the graph is dense the number of edges is proportional to "($%)
- In practice, most real-word graphs are sparse – making the adjacency matrix structure

inefficient, since it will store many None values
- If a graph is dense, a adjacency matrix might be more efficient then an adjacency list

or map
- Particularly if edges have no auxiliary data, then an adjacency matrix can be

implemented using a Boolean matrix, using 1 bit to store information about each edge
slot, e.g.) *, , = ./01 if and only if (0, 2) is an edge in the graph

Adjacency Matrix Structure – Performance (cont’d)

Graphs | 36

• get_edge(u,v) is an ! 1 operation
• Several operations are less efficient:

• degree(v), incident_edges(v) – we need to examine all # entries in the row associated
with vertex $ – !(#)

• insert_vertex(v), remove_vertex(v) – the matrix has to be resized - ! #'

Python Implementation – using an Adjacency Map variant

• Use a Python dictionary to represent each secondary incidence map, ! "
• Use a top-level dictionary # to map each vertex " to its incidence map, ! "
• All the vertices of the graph can be obtained by iterating over the keys of #
• This frees us from having to keep indices for the position of the vertices in the Vertex

• Also, rather than maintaining a separate list of edges, the edges can be found in $(& +
() time by taking the union of the edges found in all the incidence maps

Graphs | 37

Vertex class

Graphs | 38

@property

__slots__

• By default Python represents each namespace with an instance dictionary of the built-in
dict class- this maps identifying names in the scope to the associated objects

• While a dictionary structure supports relatively efficient name lookups, it requires
additional memory beyond the raw data that it stores.

• Python provides a more direct mechanism for representing instance namespaces, that
avoids the use of an auxiliary dictionary.

• To streamline the representation for all instances of a class, the class should define a
class-level member named __slots__ that is assigned a fixed sequence of strings that
serve as names for instance variables

• Advisable in particular in any nested classes that are expected to have many instances

Graphs | 39

__init__

• Whenever an instance of the Vertex class is created using a statement of the type v =
Vertex(“A”), a special method called __init__ is called

• __init__ serves as the constructor of the class

• It is responsible primarily for establishing the state of the new object – e.g. set up the
_element instance variable in the case of Vertex, set up the _origin, _destination and
_element in the case of Edge

• By convention a single leading underscore in the name of a data member, such as
_element implies that it is intended as nonpublic; users of a class should not directly
access such members

Graphs | 40

@property

• @property is a decorator which indicates that the element(self) method is a “getter”
method, and that the name of the property is the method name only – e.g. only element

• A decorator is a function which receives another function as an argument

• The behavior of the argument function is extended by the decorator without actually
modifying it

• The element of a vertex can then be obtained using x.element

• There is also a corresponding way of creating a setter using the @f.setter decorator

Graphs | 41

@element.setter
def element(self, el):

self._element = el

__hash__

• Standard Python mechanism for computing hash codes – hash(x) returns an integer
value that serves as a hash code for object x

• Only immutable data types are hashable in Python – to ensure that the object’s hash code
remains constant during the lifetime of the object

- It an object is inserted into a hash table, and then its hash code would change, then a
different object would be retrieved from the hash table

• Instances of user-defined classes are unhashable by default

• A function that computes the hash code can be implemented via the __hash__ method
within the class

- The returned hash code should reflect the immutable attributes of an instance (e.g.
_element would not make for a good attribute for hashing, it might be updated)

• Also, if x == y, then hash(x) == hash(y)

Graphs | 42

Edge Class

Graphs | 43

self

• self identifies the instance upon which a method is invoked

• self is also used to store the instance variables that reflect its current state

• self._element refers to an instance variable named _element that is stored as part of that
particular Vertex’s state

• There is a difference between a method signature as declared within a class vs. that used
by a caller:

- E.g. from the user’s perspective the opposite() method takes one parameter, the
Vertex v, while endpoints() takes no parameters

- However, within the class definition self in an explicit parameter, making opposite()
have two parameters, and endpoints() one parameter

• The Python interpreter will automatically bind the instance upon which the method is
invoked to the self parameter

Graphs | 44

Graph Class,
part 1

Graphs | 45

Python Generators

• The most convenient technique for creating iterators in Python is through the use of
generators

• A generator is implemented with a syntax that is very similar to a function, but instead of
returning values, a yield statement is executed to indicate each element of a sequence

• It is illegal to combine return and yield statements in the same implementation

• Lazy evaluation: the results are only computed if requested, the entire sequence need not
reside in memory at one time – generators can produce infinite sequences of values

• Generator comprehensions do not create temporary lists

Graphs | 46

Graph Class,
part 2

Graphs | 47

Thank you.

