
Corina Dima
corina.dima@uni-tuebingen.de

Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Priority Queues,
Binary Heaps & Heapsort

Priority Queues, Binary Heaps & Heapsort | 2

9. Priority Queues

v The Priority Queue Abstract
Data Type

v Heaps
v Sorting with a Priority Queue

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

Priority Queue ADT

Priority Queues, Binary Heaps & Heapsort | 3

Priority Queue ADT

• A priority queue stores a collection of items

• Each item is a ("#$, &'()#) pair

• The &'()# is the element that should be stored

• The "#$ is the priority associated with that particular value

• Similar to a queue, but it is the element with the minimum key that
will be next removed from the queue

Priority Queues, Binary Heaps & Heapsort | 4

Main Methods of the Priority Queue ADT

• Methods supported by the priority queue ADT, for a priority queue P:

- P.add(k, x)
inserts an item with key k and value x

- P.min()
returns, but does not remove the item with the smallest key

- P.remove_min()
removes and returns the item with smallest key

- P.is_empty()
return True if priority queue P does not contain any items

- len(P)
return the number of items in priority queue P

Priority Queues, Binary Heaps & Heapsort | 5

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A)
P.add(9,C)
P.add(3,B)
P.add(7,D)
P.min()

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 6

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C)
P.add(3,B)
P.add(7,D)
P.min()

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 7

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B)
P.add(7,D)
P.min()

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 8

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D)
P.min()

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 9

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min()

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 10

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min()
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 11

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min()

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 12

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P)
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 13

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P) 2 {(7,D),(9,C)}
P.remove_min()
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 14

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P) 2 {(7,D),(9,C)}
P.remove_min() (7,D) {(9,C)}
P.remove_min()
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 15

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P) 2 {(7,D),(9,C)}
P.remove_min() (7,D) {(9,C)}
P.remove_min() (9,C) {}
P.is_empty()

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 16

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P) 2 {(7,D),(9,C)}
P.remove_min() (7,D) {(9,C)}
P.remove_min() (9,C) {}
P.is_empty() True {}

P.remove_min()

Priority Queues, Binary Heaps & Heapsort | 17

Priority Queue - Example

Operation Return
Value

Priority Queue

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,B),(5,A),(7,D),(9,C)}

P.remove_min() (3,B) {(5,A),(7,D),(9,C)}
P.remove_min() (5,A) {(7,D),(9,C)}

len(P) 2 {(7,D),(9,C)}
P.remove_min() (7,D) {(9,C)}
P.remove_min() (9,C) {}
P.is_empty() True {}

P.remove_min() “error” {}

Priority Queues, Binary Heaps & Heapsort | 18

PQ Implementation with an Unsorted List

• Performance

- P.add(k,v) takes ? time: the item is added at the end of the
list

- P.remove_min() and P.min() take ? time, since the list is
unsorted, and all items must be inspected to find the one with
minimum key

Priority Queues, Binary Heaps & Heapsort | 19

4 5 2 3 1

PQ Implementation with an Unsorted List

• Performance

- P.add(k,v) takes ! 1 time: the item is added at the end of
the list

- P.remove_min() and P.min() take !($) time, since the
list is unsorted, and all items must be inspected to find the one
with minimum key

Priority Queues, Binary Heaps & Heapsort | 20

4 5 2 3 1

PQ Implementation with an Sorted List

• Performance

- P.add(k,v) takes ? time, since we have to find the place
where to insert the item

- P.remove_min() and P.min() take ? time, since the
smallest key is at the beginning

Priority Queues, Binary Heaps & Heapsort | 21

1 2 3 4 5

PQ Implementation with an Sorted List

• Performance

- P.add(k,v) takes ! " time, since we have to find the place
where to insert the item

- P.remove_min() and P.min() take !(1) time, since the
smallest key is at the beginning

Priority Queues, Binary Heaps & Heapsort | 22

1 2 3 4 5

Sorting with a Priority Queue

• A priority queue can be used to sort a collection of items with
comparable keys

1. Insert the items one by one using the add() operation
2. Remove the elements in sorted order by calling

remove_min() on the priority queue until all items have been
removed

Priority Queues, Binary Heaps & Heapsort | 23

Insertion Sort Revisited

• Variant of pq_sort() where the priority queue is implemented with a
sorted list

• Running time

- Inserting the elements into the priority queue with ! add()
operations takes time proportional to

1 + 2 + 3 + …+ ! = ?
- Removing the elements in sorted order from the priority queue

with a series of ! remove_min() operations takes)(!) time
- Insertion sort runs in ? time

Priority Queues, Binary Heaps & Heapsort | 24

Insertion Sort Revisited

• Variant of pq_sort() where the priority queue is implemented with a
sorted list

• Running time

- Inserting the elements into the priority queue with ! add()
operations takes time proportional to

1 + 2 + 3 + …+ ! = ! ! + 1
2

- Removing the elements in sorted order from the priority queue
with a series of ! remove_min() operations takes ((!) time

- Insertion sort runs in (!+ time

Priority Queues, Binary Heaps & Heapsort | 25

PQ Insertion Sort - Example

Priority Queues, Binary Heaps & Heapsort | 26

Sequence S Priority queue P
Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

Selection Sort

• Variant of pq_sort() where the priority queue is implemented with
an unsorted list

• Running time

- Inserting the elements into the priority queue with ! add()
operations takes ? time

- Removing the elements in sorted order from the priority queue
with a series of ! remove_min() operations takes ? time

1 + 2 + 3 + …+ ! = ?
- selection sort runs in ? time

Priority Queues, Binary Heaps & Heapsort | 27

Selection Sort

• Variant of pq_sort() where the priority queue is implemented with
an unsorted list

• Running time

- Inserting the elements into the priority queue with ! add()
operations takes "(!) time

- Removing the elements in sorted order from the priority queue
with a series of ! remove_min() operations takes "(!%) time

1 + 2 + 3 + …+ ! = ! ! + 1
2

- selection sort runs in " !% time

Priority Queues, Binary Heaps & Heapsort | 28

PQ Selection Sort - Example

Priority Queues, Binary Heaps & Heapsort | 29

Sequence S Priority Queue P
Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

Heaps

Priority Queues, Binary Heaps & Heapsort | 30

The Binary Heap Data Structure

• A binary heap is a binary tree that stores a collection of items at its
nodes and satisfies the following two properties:

1. Heap-Order Property: in a heap !, for every position " other
than the root, the key stored in " is greater than or equal to
the key stored at "’s parent

2. Complete Binary Tree Property: a heap ! with height ℎ is a
complete binary tree if levels 0, 1, … , ℎ − 1 of ! have the
maximum number of nodes possible, 2* for + = 0,… , ℎ − 1,
and the remaining nodes at level ℎ reside in the leftmost
possible position at that level

Priority Queues, Binary Heaps & Heapsort | 31

Binary Heap - Example

Priority Queues, Binary Heaps & Heapsort | 32

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(9, F) (20, B)

(11, S) (13, W)

root node

last node

Height of a Binary Heap

• Theorem: A heap ! storing " keys has height ℎ = log(" .

Priority Queues, Binary Heaps & Heapsort | 33

1

2

2h-1

1

keys
0

1

h-1

h

depth

Height of a Binary Heap (cont’d)

• Proof (using the complete binary tree property)

- Let ℎ be the height of heap " storing # keys
- " is complete, therefore on the levels 0 through ℎ − 1 there are

exactly 2) + 2+ + 2, + ⋯+ 2./+ = 2. − 1 nodes.
- On level ℎ, " has at least 1 and at most 2. nodes
- Therefore # ≥ 2. − 1 + 1 and # ≤ 2. − 1 + 2.
- Simplifying, 2. ≤ # ≤ 2.4+ − 1
- Taking the log, 0of both sides of 2. ≤ #: log, 2. ≤ log, #
- Simplifying, ℎ ≤ log, #
- # + 1 ≤ 2.4+ ⇒ log, # + 1 ≤ ℎ + 1 ⇒ log, # + 1 − 1 ≤ ℎ
- log,(# + 1) − 1 ≤ ℎ ≤ log,(#) ⇒ ℎ = log, # , since ℎ is

integer

Priority Queues, Binary Heaps & Heapsort | 34

Heaps and Priority Queues

• The theorem regarding the height of a binary heap, ℎ = log& ' ,
implies that we can perform update operations on a heap in time
proportional to its height – that is – logarithmic time, ((log ')

• Make the priority queue operations more efficient by implementing
priority queues using binary heaps

Priority Queues, Binary Heaps & Heapsort | 35

Adding an Item to a Binary Heap

•P.add(k,v), implemented with a binary heap !
• The pair (#, %) is stored as an item at a new node in the tree

• To maintain the complete binary tree property of the heap, the new
node should be placed at position ':

- Just beyond the rightmost node at the bottom level of the tree
- Or at the leftmost position of a new level, if the bottom level is

already full or the heap is empty

Priority Queues, Binary Heaps & Heapsort | 36

Up-Heap Bubbling After an Insertion

• After a new pair (", $) has been inserted, the tree & is complete,
but it may violate the heap-order property

• Up-heap bubbling is ran to ensure that the new entry is placed at
it’s proper place, by using swaps

• The key at position ' is compared to that of '’s parent, (
- If ") ≥ "+, the heap order property is satisfied, stop

- If ") < "+, the heap order property has to be restored locally, by
swapping the items on positions ' and (; the new item moves
up one level; the heap order property might still need to be
restored, so the swapping process continues until the heap
order property is again satisfied

Priority Queues, Binary Heaps & Heapsort | 37

Up-Heap Bubbling - Example

Priority Queues, Binary Heaps & Heapsort | 38

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(9, F) (20, B)

(11, S) (13, W)

Up-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 39

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(9, F) (20, B)

(2, T)(11, S) (13, W)

Up-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 40

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(9, F) (20, B)

• Heap-order property not satisfied, swap item with key 2 with
the parent item with key 9

(11, S) (13, W) (2, T)

Up-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 41

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(2, T) (20, B)

• Heap-order property not satisfied, swap item with key 2 with
the parent item with key 6

(11, S) (13, W) (9, F)

Up-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 42

(4, C)

(5, A) (2, T)

(15, K) (9, F)

(16, X) (25, J)

(6, Z)

• Heap-order property not satisfied, swap item with key 2 with
root item, with key 4

(11, S) (13, W)

(20, B)

(9, F)

Up-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 43

(2, T)

(5, A) (4, C)

(15, K) (9, F)

(16, X) (25, J)

• Heap-order property is satisfied, stop

(11, S) (13, W)

(6, Z) (20, B)

(9, F)

Up-Heap Bubbling – Wrap-up

• The up-heap bubbling process terminates when the new item with
key ! reaches the root, or a node whose parent has a key smaller
than or equal to !

• Since a binary heap has height ℎ = log ' , the up-heap bubbling
process runs in ((log ') time

Priority Queues, Binary Heaps & Heapsort | 44

Removing the Item with Minimum Key from a Binary Heap

• The item with the smallest key is stored at the root of the heap !
• The root item cannot simply be removed – this would lead to two

disconnected trees

• Instead, the leaf at the last position " of ! is removed (the
rightmost leaf on the lowest level of !), thus ensuring that the heap
keeps respecting the complete binary tree property

• The last item is preserved by copying it into the root element #, in
place of the minimum element

• The heap-order property is then restored via the process called
down-heap bubbling

Priority Queues, Binary Heaps & Heapsort | 45

Down-Heap Bubbling

• After replacing the root item with the item with key ! from the last
node, the heap-order property might be violated

• Down-heap bubbling restores the heap-order property by
swapping the item with key ! along a downward path from the root

• If " initially denotes the root of #, two cases can be distinguished in
the process:

- If " has no right child, then $ is the left child of "
- If " has both a left and a right child, then $ is the child of " with

minimal key
• If !% ≤ !', the heap-order property is satisfied, stop

• If !% > !', the heap-order property has to be restored, by
swapping the items on positions " and $; process continues until
the heap-order property is restored

Priority Queues, Binary Heaps & Heapsort | 46

Down-Heap Bubbling - Example

Priority Queues, Binary Heaps & Heapsort | 47

(4, C)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(7, Q) (20, B)

(11, S) (13, W)(14, E) (12, H)

Down-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 48

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(7, Q) (20, B)

(11, S)(14, E) (12, H)

(4, C)
(13, W)

Down-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 49

(13,W)

(5, A) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(7, Q) (20, B)

(11, S)(14, E) (12, H)

• Heap-order property not satisfied, swap root item, (13,W) with the
child with minimum key, (5,A)

Down-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 50

(5, A)

(13, W) (6, Z)

(15, K) (9, F)

(16, X) (25, J)

(7, Q) (20, B)

(11, S)(14, E) (12, H)

• Heap-order property not satisfied, swap the item (13,W) with the
child with minimum key, (9,F)

Down-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 51

(5, A)

(9, F) (6, Z)

(15, K) (13, W)

(16, X) (25, J)

(7, Q) (20, B)

(11, S)(14, E) (12, H)

• Heap-order property not satisfied, swap the item (13,W) with the
child with minimum key, (12,H)

Down-Heap Bubbling – Example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 52

(5, A)

(9, F) (6, Z)

(15, K) (13, W)

(16, X) (25, J)

(7, Q) (20, B)

(11, S)(14, E) (12, H)

• Heap-order property is satisfied, stop

Down-Heap Bubbling – Wrap-up

• Down-heap bubbling terminates when the new item with key !
reaches a leaf or a node whose children have keys greater than or
equal to !

• Since a binary heap has height ℎ = log ' , the down-heap
bubbling process runs in ((log ') time

Priority Queues, Binary Heaps & Heapsort | 53

PQ implementation using a Binary Heap

• Performance

- P.add(k,v) takes ! log % time, since we have to do up-heap
bubbling on the full height of the tree in the worst case

- P.min() takes !(1) time, since the smallest key is at the top
of the heap

- P.remove_min() takes !(log %) time, since we have to do
down-heap bubbling on the full height of the tree in the worst
case

Priority Queues, Binary Heaps & Heapsort | 54

Sorting with a Priority Queue

• A priority queue can be used to sort a collection of items with
comparable keys

1. Insert the items one by one using the add() operation
2. Remove the elements in sorted order by calling

remove_min() on the priority queue until all items have been
removed

Priority Queues, Binary Heaps & Heapsort | 55

Heap Sort

• Variant of pq_sort() where the priority queue is implemented with a
heap

• Running time

- Inserting ! elements into the priority queue with ! add()
operations takes ? time

- Removing ! elements from the constructed priority queue using
! remove_min() operations takes ? time

- The heap sort algorithm sorts a collection # of ! elements in ?
time, assuming two elements of # can be compared in $(1)
time

- Space usage of heap sort is $(!)

Priority Queues, Binary Heaps & Heapsort | 56

Heap Sort

• Variant of pq_sort() where the priority queue is implemented with a
heap

• Running time

- Inserting ! elements into the priority queue with ! add()
operations takes "(! log !) time - but can be improved to "(!)

- Removing ! elements from the constructed priority queue using
! remove_min() operations takes "(! log !) time

- The heap sort algorithm sorts a collection (of ! elements in
"(! log !) time, assuming two elements of (can be compared
in "(1) time

- Space usage of heap sort is "(!)

Priority Queues, Binary Heaps & Heapsort | 57

Types of Heaps

• Min-heap, presented – the minimum element is at the top

• Max-heap

- the maximum element is at the top
- the key at each position is at least as large as its children
- add(k,v) – inserts the item (", $) into the heap
- remove_max() – removes and retrieves the maximum

element of the heap
- max() – retrieve, but do not remove the maximum element of

the heap

Priority Queues, Binary Heaps & Heapsort | 58

In-place Heap Sort

• When the collection to be sorted is implemented as an array-based
sequence (i.e. Python list), we can reduce the space requirement

• We can use a portion of the list to store the heap, and avoid the
auxiliary heap data structure; use a max-heap

• At any time during execution:

- use the leftmost portion of the array, up to the index ! − 1, to
store the items of the heap
- use the right portion of the array, from ! to $ − 1, to store the

elements of the sequence
• The first ! elements of the array (indices 0,… , ! − 1) provide the

array-list representation of the heap

Priority Queues, Binary Heaps & Heapsort | 59

Array-Based Heap Implementation

• A binary heap with ! keys can
be represented by means of an
array of length !

• For the node at position "
- The left child is at 2" + 1
- The right child is at 2" + 2

• Links between nodes are not
explicitly stored

• The add() operation
corresponds to inserting at
position ! + 1

• The remove_min() operation
corresponds to removing at
position !

Priority Queues, Binary Heaps & Heapsort | 60

2

65

79

2 5 6 9 7
0 1 2 3 4

In-place Heap Sort (cont’d)

• In the first phase of the algorithm, start with an empty heap, and
move the boundary between the heap and the sequence from left
to right, one step at a time

• In step !, for ! = 1,… , &, we expand the heap by adding the
element at index ! − 1

• In the second phase of the algorithm, we start with an empty
sequence and move the boundary between the heap and the
sequence from right to left, one step at a time

• At step !, for ! = 1,… , &, we remove the maximum element from
the heap and store it at index & − !

Priority Queues, Binary Heaps & Heapsort | 61

In-place Heap Sort – example, phase 2

Priority Queues, Binary Heaps & Heapsort | 62

9 7 5 2 6 4

9

7 5

2 6 4

• Sequence (yellow) empty
• Heap (blue) has six elements

In-place Heap Sort – example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 63

7 6 5 2 4 9

7

6 5

2 4

• Remove the largest element in the heap, 9; 4 moves to root
• Move the boundary one step from right to left
• Sequence has one element [9]
• Heap has five elements; down-heap bubbling to move 4 to its

place

In-place Heap Sort - example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 64

6 4 5 2 7 9

6

4 5

2

• Removed the largest element in the heap, 7; 4 moves to root
• Move the boundary one step from right to left
• Sequence has two elements [7, 9]
• Heap has four elements; down-heap bubbling to move 4 to its

position

In-place Heap Sort - example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 65

5 4 2 6 7 9

5

4 2

• Remove the largest element 6; move 2 to the root
• Move the boundary one step from right to left
• Sequence has three elements [6,7,9]
• Heap has three elements; down-heap bubbling to move 2 to its

position

In-place Heap Sort - example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 66

4 2 5 6 7 9

4

2

• Remove the largest element, 5; 2 goes to the root
• Move the boundary one step from right to left
• Sequence has four elements [5, 6,7,9]
• Heap has two elements; down-heap bubbling to

move 2 to its position

In-place Heap Sort - example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 67

2 4 5 6 7 9

2

• Remove the largest element 4; 2 moves to the root
• Move the boundary one step from right to left
• Sequence has five elements [4,5,6,7,9]
• Heap has one element

In-place Heap Sort - example, phase 2 (cont’d)

Priority Queues, Binary Heaps & Heapsort | 68

2 4 5 6 7 9

• Remove last element from the heap, 2
• Move the boundary one step from right to left
• Sequence has six elements [2,4,5,6,7,9]
• Heap is empty

Bottom-Up Heap Construction

• Starting with an initially empty heap and having ! successive calls
to the add() operation leads to a "(! log !) running time in the
worst case

• However, if all the values are known in advance, there is an
alternative bottom-up construction that runs in "(!) time

• For simplicity, assume that we are constructing a heap with !
items, such that ! = 2*+, − 1 − that is, the heap is a complete
binary tree with every level being full

• Typically the function is called heapify()

Priority Queues, Binary Heaps & Heapsort | 69

Bottom-Up Heap Construction - example

Priority Queues, Binary Heaps & Heapsort | 70

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 71

16 15 4 12 6 7 23 20

• Step 1: construct (" + 1)/2 elementary heaps storing one element each

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 72

16 15 4 12 6 7 23 20

25 9 11 17

• Step 2: construct (" + 1)/4 heaps, each storing three elements

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 73

16 25 9 12 11 7 23 20

15 4 6 17

• Step 2: the new entries might have to be swapped with their children to
preserve the heap-order property

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 74

16 25 9 12 11 7 23 20

15 4 6 17

5 8

• Step 3: construct (" + 1)/8 heaps, each containing 7 elements

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 75

16 25 9 12 11 8 23 20

15 5 7 17

4 6

• Step 3: down-heap bubbling of the new elements

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 76

16 25 9 12 11 8 23 20

15 5 7 17

4 6

14

• Step 4: form the final heap, by adding the last entry

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Bottom-Up Heap Construction – example (cont’d)

Priority Queues, Binary Heaps & Heapsort | 77

16 25 9 14 11 8 23 20

15 12 7 17

5 6

4

• Step 4: down-heap bubbling of the root element

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

Python’s heapq Module

• Python’s standard distribution includes the heapq module, which
provides functions that allow a standard Python list to be managed
as a min-heap

• " elements are stored in list cells from #[0] through #[" − 1]
• The smallest element is at the root, #[0]
• Operations

- heappush(L,e): push element) onto list # and restore the heap-
order property

- heappop(L): pop and return the element with the smallest value from
the list #, and re-establish the heap-order property

- heappushpop(L,e): push element) on the list # and then pop and
return the smallest element

- heapify(L): transform an unordered list to satisfy the heap-order
property in *(") time using the bottom-up construction algorithm

Priority Queues, Binary Heaps & Heapsort | 78

Sorting – Wrap-up

Algorithm Time Notes
insertion sort !(#$) • in-place

• slow, but good for
small inputs

quick sort !(# log #) • in-place,
randomized

• fastest, good for
large inputs

heap sort !(# log #) • in-place
• fast, good for large

inputs

Priority Queues, Binary Heaps & Heapsort | 79

Remember Merge Sort

• Another instance of sorting algorithm based on the divide-and-
conquer paradigm, just like quick sort

• To sort a sequence ! with " items using merge sort:

1. Divide: If ! has zero or one element, return ! immediately; it
is already sorted; otherwise, if ! has at least two elements,
remove all the elements from ! and put them in two
sequences, !# (containing the first "/2 elements) and !&
(containing the remaining "/2 elements)

2. Conquer: Recursively sort sequences !# and !&
3. Combine: Put back the elements into ! by merging the sorted

sequences !# and !& into a sorted sequence

Priority Queues, Binary Heaps & Heapsort | 80

Merge Sort - Algorithm

Priority Queues, Binary Heaps & Heapsort | 81

Merge Sort – Algorithm (cont’d)

Priority Queues, Binary Heaps & Heapsort | 82

Sorting – Wrap-up

Algorithm Time Notes
insertion sort !(#$) • in-place

• slow, but good for
small inputs

quick sort !(# log #) • in-place,
randomized

• fastest, good for
large inputs

heap sort !(# log #) • in-place
• fast, good for large

inputs
merge sort !(# log #) • fast, sequential data

access, good for
very large datasets

Priority Queues, Binary Heaps & Heapsort | 83

Stable Sorting

• When sorting key-value pairs, an important issue is how are equal
keys handled

• Given the sequence ! = ($%, '% , … , $)*+, ')*+), we say that a
sorting algorithm is stable if, for any two entries ($-, '-) and ($., '.)
such that $- = $. and ($-, '-) precedes ($., '.) in ! before sorting,
the entry $-, '- will also precede ($., '.) after sorting

Priority Queues, Binary Heaps & Heapsort | 84

Sorting – Wrap-up

Algorithm Time Notes
insertion sort !(#$) • in-place

• slow, but good for
small inputs

• stable

quick sort !(# log #) • in-place, randomized
• fastest, good for large

inputs
• not stable

heap sort !(# log #) • in-place
• fast, good for large

inputs
• not stable

merge sort !(# log #) • not in-place
• fast, sequential data

access, good for very
large datasets

• stable

Priority Queues, Binary Heaps & Heapsort | 85

Timsort – a hybrid sorting algorithm

Priority Queues, Binary Heaps & Heapsort | 86

• Developed by Tim Peters for Python, in 2001
• Currently the default sorting algorithm in Python & Java
• Takes advantage of consecutive ordered elements – natural runs
• Collects elements into runs, then simultaneously merges the runs
• hybrid between binary insertion sort and merge sort

• From https://bugs.python.org/file4451/timsort.txt

https://bugs.python.org/file4451/timsort.txt

Sorting – Wrap-up

Algorithm Time Notes
insertion sort !(#$) • in-place

• slow, but good for small
inputs

• stable

quick sort !(# log #) • in-place, randomized
• fastest, good for large

inputs
• not stable

heap sort !(# log #) • in-place
• fast, good for large inputs
• not stable

merge sort !(# log #) • usually, not in-place
• fast, sequential data

access, good for very
large datasets

• stable

timsort !(# log #) • in-place
• stable
• fast, good for large data

Priority Queues, Binary Heaps & Heapsort | 87

Bonus round
Bucket Sort & Radix Sort

Priority Queues, Binary Heaps & Heapsort | 88

Bucket Sort

• consider a sequence ! containing " (key, value) entries

- the keys are integers in the range [0, & − 1], & ≥ 2
- sorting ! according to the keys is possible in ,(" + &) time
- not using comparisons

• Phase 1

- use keys as indices into a bucket array 0, indexed from 0 to &
- an entry with key 1 is placed into the bucket 0[1] – also an

array
- add all entries of ! to 0

• Phase 2

- add the sorted entries back to ! by reading the contents of each
bucket of 0, in order

Priority Queues, Binary Heaps & Heapsort | 89

Bucket Sort - Example

Priority Queues, Binary Heaps & Heapsort | 90

• Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

Æ Æ Æ Æ Æ Æ Æ

Bucket Sort - Algorithm

Priority Queues, Binary Heaps & Heapsort | 91

Bucket Sort – Running Time

• Phase 1

- adding sequence elements to bucket array
- "($) time

• Phase 2

- puting back the sorted entries into &
- "($ + () time

• Bucket sort runs in "($ + () time

• stable sort

• efficient when (is small compared to $, e.g. (= "($), (=
"($ log $)

• performance gets worse as (grows compared to $

Priority Queues, Binary Heaps & Heapsort | 92

Radix Sort

• suppose we want to sort entries where the keys are pairs (", $)
• ", $ integers in [0,) − 1]
• ("-, $-) < ("/, $/) if "- < "/ or if "- = "/ and $- < $/
• radix sort sorts a sequence with keys that are pairs by applying the

stable bucket sort algorithm on the sequence twice

- first using the second component, $
- then using the first component, "

Priority Queues, Binary Heaps & Heapsort | 93

Radix Sort - Algorithm

Priority Queues, Binary Heaps & Heapsort | 94

Algorithm radix_sort(S, N)
Input sequence S of d-tuples such

that (0, …, 0) £ (x1, …, xd) and
(x1, …, xd) £ (N - 1, …, N - 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i ¬ d downto 1
bucket_sort(S, N)

• radix sort runs in !(#($ + &)) time

Radix Sort - Example

Priority Queues, Binary Heaps & Heapsort | 95

• Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Thank you.

Notation

• " indicates the floor of ", that is, the largest integer # such that
≤ "

• " indicates the ceiling of ", that is, the smallest integer % such
that " ≤ %

Priority Queues, Binary Heaps & Heapsort | 97

