EBERHARD KARLS' . FACULTY OF
UNIVERSITAT HUMANITIES
TUBINGE N Department of General and Computational Linguistics

Priority Queues,
Binary Heaps & Heapsort

- 0000000000000
Data Structures and Algorithms for CL lll, WS 2019-2020

Corina Dima
corina.dima@uni-tuebingen.de



MICHAEL GOODRICH

Data Structures & Algorithms in Python ROBERTO TAMASSIA
MICHAEL GOLDWASSER

Data Structures 9. Priority Queues
& Algorithms
% The Priority Queue Abstract
Data Type
s Heaps

/

% Sorting with a Priority Queue

EBERHARD KARLS
U%\éIEISéIETQT Priority Queues, Binary Heaps & Heapsort | 2



Priority Queue ADT
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Priority Queue ADT

* A priority queue stores a collection of items

« Each itemis a (key, value) pair

* The value is the element that should be stored

* The key is the priority associated with that particular value

« Similar to a queue, but it is the element with the minimum key that
will be next removed from the queue
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Main Methods of the Priority Queue ADT

» Methods supported by the priority queue ADT, for a priority queue P:
- P.add(k, x)
inserts an item with key k and value x

- P.min()
returns, but does not remove the item with the smallest key

- P.remove_min()
removes and returns the item with smallest key

-P.is_empty()
return True if priority queue P does not contain any items

- len(P)
return the number of items in priority queue P
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A)
P.add(9,C)
P.add(3,B)
P.add(7,D)
P.min()
P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A) {(5,A)}
P.add(9,C)
P.add(3,B)
P.add(7,D)
P.min()
P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,0)}
P.add(3,B)
P.add(7,D)

P.min()

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,Q)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D)

P.min()

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A) {(5,A)}

P.add(9,C) {(5,A), (9,Q)}

P.add(3,B) {(3,B),(5,A),(9,C)}

P.add(7,D) {(3,8),(5,A),(7,D),(9,C)}
P.min()

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

Operation Return Priority Queue
Value

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,0)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,8),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,8),(5,A),(7,D),(9,C)}

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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{(5,A)}
{(5,A), (9,Q)}
{(3,8B),(5,A),(9,C)}
{(3,8B),(5,A),(7,D),(9,0)}
(3,B) {(3,8B),(5,A),(7,D),(9,0)}
(3,B) {1(5,A),(7,D),(9,0C)}

Priority Queues, Binary Heaps & Heapsort | 12



Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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{(5,A)}
{(5,A), (9,Q)}
{(3,8B),(5,A),(9,C)}
{(3,8B),(5,A),(7,D),(9,0)}
(3,B) {(3,8B),(5,A),(7,D),(9,0)}
(3,B) {1(5,A),(7,D),(9,0C)}
(5,A) e C7DNS IS I,
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Priority Queue - Example

P.add(5,A) {(5,A)}
P.add(9,C) {(5,A), (9,C)}
P.add(3,B) {(3,B),(5,A),(9,C)}
P.add(7,D) {(3,8B),(5,A),(7,D),(9,C)}
P.min() (3,B) {(3,8B),(5,A),(7,D),(9,C)}
P.remove_min() (3,B) {1(5,A),(7,D),(9,0C)}
P.remove _min() (5,A) {(7,D),(9,0C)}
len(P) 2 {(7,D),(9,C)}

P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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(3,B)
(3,B)
(5,A)

(7,D)

{(5,A)}

1(5,A), (9,C0)}
{(3,8B),(5,A),(9,C)}
(3B (S AT DR RGO C
1(3,8B),(5,A),(7,D),(9,C)}
{(5,A),(7,D),(9,C)}

e C7DNS IS I,
75D, 09, C
{(9,C)}
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Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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(3,B)
(3,B)
(5,A)

(7,D)
(9,C)

{(5,A)}

1(5,A), (9,C0)}
{(3,8B),(5,A),(9,C)}
(3B (S AT DR RGO C
1(3,8B),(5,A),(7,D),(9,C)}
{(5,A),(7,D),(9,C)}

e C7DNS IS I,
75D, 09, C
{(9,C)}
1r
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Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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(3,B)
(3,B)
(5,A)

(7,D)
(9,0C)
True

{(5,A)}

1(5,A), (9,C0)}
{(3,8B),(5,A),(9,C)}
(3B (S AT DR RGO C
1(3,8B),(5,A),(7,D),(9,C)}
{(5,A),(7,D),(9,C)}

e C7DNS IS I,
75D, 09, C
{(9,C)}
1r
1r
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Priority Queue - Example

P.remove_min()
P.remove_min()
len(P)
P.remove_min()
P.remove_min()
P.is_empty()
P.remove_min()
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(3,B)
(3,B)
(5,A)

(7,D)

(9,C)

True
“error”

{(5,A)}

1(5,A), (9,C0)}
{(3,8B),(5,A),(9,C)}
(3B (S AT DR RGO C
1(3,8B),(5,A),(7,D),(9,C)}
{(5,A),(7,D),(9,C)}

e C7DNS IS I,
75D, 09, C
{(9,C)}
1r
1r
1r
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PQ Implementation with an Unsorted List

 Performance

- P.add(k,v) takes ? time: the item is added at the end of the
list

- P.remove_min() and P.min() take ? time, since the list is
unsorted, and all items must be inspected to find the one with
minimum key
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PQ Implementation with an Unsorted List

 Performance

- P.add(k,v) takes 0(1) time: the item is added at the end of
the list

-P.remove_min() and P.min() take O(n) time, since the
list is unsorted, and all items must be inspected to find the one
with minimum key
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PQ Implementation with an Sorted List

 Performance

- P.add(k,v) takes ? time, since we have to find the place
where to insert the item

- P.remove_min() and P.min() take ? time, since the
smallest key is at the beginning
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PQ Implementation with an Sorted List

 Performance

-P.add(k,v) takes 0(n) time, since we have to find the place
where to insert the item

-P.remove_min() and P.min() take 0(1) time, since the
smallest key is at the beginning
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Sorting with a Priority Queue

* A priority queue can be used to sort a collection of items with
comparable keys

1. Insert the items one by one using the add() operation

2. Remove the elements in sorted order by calling
remove_min() on the priority queue until all items have been

removed

| def pq_sort(C):

2 """ Sort a collection of elements stored in a positional list.” "™’
3 n=len(C)

4 P = PriorityQueue()

5 for j in range(n):

6 element = C.delete(C.first())

7 P.add(element, element) # use element as key and value

8§  forjin range(n):

9 (k,v) = P.remove_min()

10 C.add_last(v) # store smallest remaining element in C
UNIVERSITAT Priority Queues, Binary Heaps & Heapsort | 23
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Insertion Sort Revisited

 Variant of pg_sort() where the priority queue is implemented with a
sorted list

* Running time
- Inserting the elements into the priority queue with n add ()
operations takes time proportional to

1+24+3+ ...+n=7?

- Removing the elements in sorted order from the priority queue
with a series of n remove_min() operations takes 0(n) time

- Insertion sort runs in ? time
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Insertion Sort Revisited

 Variant of pg_sort() where the priority queue is implemented with a
sorted list

* Running time

- Inserting the elements into the priority queue with n add ()
operations takes time proportional to

n(n+ 1)
2
- Removing the elements in sorted order from the priority queue
with a series of n remove_min() operations takes 0(n) time

14243+ ...+n=

- Insertion sort runs in 0(n?) time
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PQ Insertion Sort - Example

Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) 0
Phase 1

(a) (4,8,2,5,3,9) (7)

(b) (8,2,5,3,9) (4,7)

(c) (2,5,3,9) (4,7,8)

(d) (5,3,9) (2,4,7,8)

(e) (3,9) (24,5,7,8)

(f) (9) (2,3,4,5,7,8)

(9) ) (2,3,4,5,7,8,9)
Phase 2

(a) (2) (3,4,5,7,8,9)

(b) (2,3) (4,5,7,8,9)

(g) (2/3/4/5/7/8/9) ()
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Selection Sort

« Variant of pg_sort() where the priority queue is implemented with
an unsorted list
* Running time
- Inserting the elements into the priority queue with n add ()
operations takes ? time

- Removing the elements in sorted order from the priority queue
with a series of n remove_min () operations takes ? time

1+24+3+ ...+n=7

- selection sort runs in ? time
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Selection Sort

« Variant of pg_sort() where the priority queue is implemented with
an unsorted list

* Running time
- Inserting the elements into the priority queue with n add ()

operations takes 0(n) time
- Removing the elements in sorted order from the priority queue
with a series of n remove_min () operations takes 0(n?) time
nn+1)
2

14243+ ...+n=

- selection sort runs in 0(n?) time
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PQ Selection Sort - Example

Input:

Phase 1
(a)
(b)

(9)

Phase 2
(a)
(b)
(c)
(d)
(e)
(f)
(9)
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Sequence S
(7/4/8/2/5/3/9)

(4/8/2/5/3/9)
(8/2/5/3/9)

9

(2)

(2,3)

(2,3,4)
(2/3/4/5)
(2/3/4/5/7)
(2/3/4/5/7/8)
(2/3/4/5/7/8/9)

Priority Queue P
9,

(7)
(7,4)

(7/4/8/2/5/3/9)

(7/4/8/5/3/9)
(7/4/8/5/9)
(7/8/5/9)
(7,8,9)

(8,9)

(9)

9
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Heaps
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The Binary Heap Data Structure

» A binary heap is a binary tree that stores a collection of items at its
nodes and satisfies the following two properties:

1. Heap-Order Property: in a heap T, for every position p other
than the root, the key stored in p is greater than or equal to
the key stored at p’s parent

2. Complete Binary Tree Property: a heap T with height h is a
complete binary tree if levels 0,1, ...,h — 1 of T have the
maximum number of nodes possible, 2t fori = 0, ...,h — 1,
and the remaining nodes at level h reside in the leftmost
possible position at that level
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Binary Heap - Example rootnode

last node
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Height of a Binary Heap

« Theorem: A heap T storing n keys has height h = [log, n]|.

depth keys

h—1
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Height of a Binary Heap (cont’d)

 Proof (using the complete binary tree property)

- Let h be the height of heap T storing n keys

- T is complete, therefore on the levels 0 through h — 1 there are
exactly 20 + 21 + 22 + ... + 271 = 2" — 1 nodes.

- On level h, T has at least 1 and at most 2" nodes

- Thereforen >2"—1+1andn <2t -1+ 2"

- Simplifying, 2" <n <21 -1

- Taking the log, of both sides of 2"* < n: log, 2" <log, n

- Simplifying, h <log, n

n+1<2M s log,(n+1)<h+1=>log;(n+1)—1<h

- log,(n+1) —1 < h<log,(n) > h = |log,n|, since h is
integer
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Heaps and Priority Queues

» The theorem regarding the height of a binary heap, h = |log, n|,
implies that we can perform update operations on a heap in time
proportional to its height — that is — logarithmic time, O(logn)

» Make the priority queue operations more efficient by implementing
priority queues using binary heaps

EBERHARD KARLS ga . . .
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Adding an Iltem to a Binary Heap

e P.add(k, V), implemented with a binary heap T
* The pair (k,v) is stored as an item at a new node in the tree

» To maintain the complete binary tree property of the heap, the new
node should be placed at position p:

- Just beyond the rightmost node at the bottom level of the tree

- Or at the leftmost position of a new level, if the bottom level is
already full or the heap is empty

EBERHARD KARLS
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Up-Heap Bubbling After an Insertion

 After a new pair (k, v) has been inserted, the tree T is complete,
but it may violate the heap-order property

» Up-heap bubbling is ran to ensure that the new entry is placed at
it's proper place, by using swaps

» The key at position p is compared to that of p’s parent, g

- If k,, = kg, the heap order property is satisfied, stop

- If k,, < k4, the heap order property has to be restored locally, by
swapping the items on positions p and g; the new item moves
up one level; the heap order property might still need to be
restored, so the swapping process continues until the heap

order property is again satisfied
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Up-Heap Bubbling - Example
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Up-Heap Bubbling — Example (cont’d)
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Up-Heap Bubbling — Example (cont’d)

« Heap-order property not satisfied, swap item with key 2 with
the parent item with key 9
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Up-Heap Bubbling — Example (cont’d)

Cu.c
CEm > 6.2
5,0 @@)g@

« Heap-order property not satisfied, swap item with key 2 with
the parent item with key 6
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Up-Heap Bubbling — Example (cont’d)
Na_—
(> Cen>
Casw>  Cend  Cezd Cand

« Heap-order property not satisfied, swap item with key 2 with
root item, with key 4
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Up-Heap Bubbling — Example (cont’d)

* Heap-order property is satisfied, stop
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Up-Heap Bubbling — Wrap-up

* The up-heap bubbling process terminates when the new item with
key k reaches the root, or a node whose parent has a key smaller
than or equal to k

 Since a binary heap has height h = |logn|, the up-heap bubbling
process runs in O(logn) time
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Removing the Item with Minimum Key from a Binary Heap

» The item with the smallest key is stored at the root of the heap T

* The root item cannot simply be removed — this would lead to two
disconnected trees

* Instead, the leaf at the last position p of T is removed (the
rightmost leaf on the lowest level of T), thus ensuring that the heap
keeps respecting the complete binary tree property

* The last item is preserved by copying it into the root element r, in
place of the minimum element

* The heap-order property is then restored via the process called
down-heap bubbling

EBERHARD KARLS
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Down-Heap Bubbling

* After replacing the root item with the item with key k from the last
node, the heap-order property might be violated

* Down-heap bubbling restores the heap-order property by
swapping the item with key k along a downward path from the root

* If p initially denotes the root of T, two cases can be distinguished in
the process:

- If p has no right child, then c is the left child of p

- If p has both a left and a right child, then c is the child of p with
minimal key

* If k. < k), the heap-order property is satisfied, stop

* If k. > k,, the heap-order property has to be restored, by
swapping the items on positions p and c; process continues until
the heap-order property is restored
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Down-Heap Bubbling - Example
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Down-Heap Bubbling — Example (cont’d)

(4, C)
- (13, W)
CEA> (6.2
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Down-Heap Bubbling — Example (cont’d)
—
.m0 (6,20
Cas>  Co.p> (1D (0.8

« Heap-order property not satisfied, swap root item, (13,W) with the
child with minimum key, (5,A)
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Down-Heap Bubbling — Example (cont’d)

> T Cona>

« Heap-order property not satisfied, swap the item (13,W) with the
child with minimum key, (9,F)
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Down-Heap Bubbling — Example (cont’d)

« Heap-order property not satisfied, swap the item (13,W) with the
child with minimum key, (12,H)
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Down-Heap Bubbling — Example (cont’d)

« Heap-order property is satisfied, stop
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Down-Heap Bubbling — Wrap-up

* Down-heap bubbling terminates when the new item with key k
reaches a leaf or a node whose children have keys greater than or

equal to k

 Since a binary heap has height h = [logn|, the down-heap
bubbling process runs in O(logn) time
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PQ implementation using a Binary Heap

 Performance

-P.add(k,v) takes 0(logn) time, since we have to do up-heap
bubbling on the full height of the tree in the worst case

-P.min() takes 0(1) time, since the smallest key is at the top
of the heap

-P.remove_min() takes O(logn) time, since we have to do
down-heap bubbling on the full height of the tree in the worst
case
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Sorting with a Priority Queue

* A priority queue can be used to sort a collection of items with
comparable keys

1. Insert the items one by one using the add() operation

2. Remove the elements in sorted order by calling
remove_min() on the priority queue until all items have been

removed

| def pq_sort(C):

2 """ Sort a collection of elements stored in a positional list.” "™’
3 n=len(C)

4 P = PriorityQueue()

5 for j in range(n):

6 element = C.delete(C.first())

7 P.add(element, element) # use element as key and value

8§  forjin range(n):

9 (k,v) = P.remove_min()

10 C.add_last(v) # store smallest remaining element in C
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Heap Sort

« Variant of pg_sort() where the priority queue is implemented with a
heap

* Running time
- Inserting n elements into the priority queue with n add ()

operations takes ? time

- Removing n elements from the constructed priority queue using
n remove_min() operations takes ? time

- The heap sort algorithm sorts a collection C of n elements in ?
time, assuming two elements of C can be compared in 0(1)

time
- Space usage of heap sort is 0(n)
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Heap Sort

« Variant of pg_sort() where the priority queue is implemented with a
heap
* Running time
- Inserting n elements into the priority queue with n add ()
operations takes 0(nlogn) time - but can be improved to 0(n)

- Removing n elements from the constructed priority queue using
n remove_min() operations takes O(nlogn) time

- The heap sort algorithm sorts a collection C of n elements in
O(nlogn) time, assuming two elements of C can be compared
in 0(1) time

- Space usage of heap sort is 0(n)
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Types of Heaps

* Min-heap, presented — the minimum element is at the top
* Max-heap

- the maximum element is at the top
- the key at each position is at least as large as its children
-add(k,v) —inserts the item (k, v) into the heap

- remove_max () — removes and retrieves the maximum
element of the heap

-max () — retrieve, but do not remove the maximum element of
the heap
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In-place Heap Sort

* When the collection to be sorted is implemented as an array-based
sequence (i.e. Python list), we can reduce the space requirement

« We can use a portion of the list to store the heap, and avoid the
auxiliary heap data structure; use a max-heap

« At any time during execution:
- use the leftmost portion of the array, up to the index i — 1, to

store the items of the heap

- use the right portion of the array, from i to n — 1, to store the
elements of the sequence

» The first i elements of the array (indices 0, ...,i — 1) provide the
array-list representation of the heap
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Array-Based Heap Implementation

* A binary heap with n keys can
be represented by means of an
array of length n

* For the node at position i

- The left child is at 2i + 1
- The right child is at 2i + 2

* Links between nodes are not
explicitly stored

« The add () operation
corresponds to inserting at
position n + 1

* The remove_min() operation
corresponds to removing at
position n
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In-place Heap Sort (cont’d)

* In the first phase of the algorithm, start with an empty heap, and
move the boundary between the heap and the sequence from left

to right, one step at a time

* Instep i, fori =1, ...,n, we expand the heap by adding the
element at index i — 1

* In the second phase of the algorithm, we start with an empty
sequence and move the boundary between the heap and the

sequence from right to left, one step at a time

* Atstep i, fori =1, ...,n, we remove the maximum element from
the heap and store it at index n — i
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In-place Heap Sort — example, phase 2

« Sequence (yellow) empty
« Heap (blue) has six elements
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In-place Heap Sort — example, phase 2 (cont’d)

* Remove the largest element in the heap, 9; 4 moves to root

* Move the boundary one step from right to left

« Sequence has one element [9]

« Heap has five elements; down-heap bubbling to move 4 to its
place

EBERHARD KARLS &
UNIVERSITAT ¢
TUBINGEN

Priority Queues, Binary Heaps & Heapsort | 63



In-place Heap Sort - example, phase 2 (cont’d)

* Removed the largest element in the heap, 7; 4 moves to root

« Move the boundary one step from right to left

« Sequence has two elements [7, 9]

« Heap has four elements; down-heap bubbling to move 4 to its
position
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In-place Heap Sort - example, phase 2 (cont’d)

 Remove the largest element 6; move 2 to the root

* Move the boundary one step from right to left

« Sequence has three elements [6,7,9]

* Heap has three elements; down-heap bubbling to move 2 to its
position
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In-place Heap Sort - example, phase 2 (cont’d)
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Remove the largest element, 5; 2 goes to the root
Move the boundary one step from right to left
Sequence has four elements [5, 6,7,9]

Heap has two elements; down-heap bubbling to
move 2 to its position
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In-place Heap Sort - example, phase 2 (cont’d)

@

 Remove the largest element 4; 2 moves to the root
* Move the boundary one step from right to left

« Sequence has five elements [4,5,6,7,9]

* Heap has one element
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In-place Heap Sort - example, phase 2 (cont’d)

 Remove last element from the heap, 2

* Move the boundary one step from right to left
« Sequence has six elements [2,4,5,6,7,9]

* Heap is empty
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Bottom-Up Heap Construction

 Starting with an initially empty heap and having n successive calls
to the add() operation leads to a O(nlogn) running time in the
worst case

 However, if all the values are known in advance, there is an
alternative bottom-up construction that runs in 0(n) time

 For simplicity, assume that we are constructing a heap with n
items, such that n = 2"*1 — 1 — that is, the heap is a complete
binary tree with every level being full

« Typically the function is called heapify ()
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Bottom-Up Heap Construction - example
16,15,4,12,6,7,23,20,25,9,11,17,5,8,14
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Bottom-Up Heap Construction — example (cont’d)

o-. 16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

s 4
P NS SN
., N
-, IN
’ ~
., N
., N
., N
7’ \\
// S
7 ~
. N
’ N
7 ~
’ ~
, ~
’, ~
, ~
. N
-—— ' S -——
- ~ 7 N - ~
' ~ N7 N
4 \ 4 \
! \ ! \
1 1 I 1
\ 1 \ 1
\ ’ \ ’
> A > <
P RS SN P RSSESREN
’ N / S
/ Al Vd N
N ’ N
’ S s S
p N y N
== s \\ PEEN P \\ PEEN
, fg ’ N s ~ 4 N
4 \ 4 \ 4 \ 4 \
/ \ / \ / \ 1 \
I 1 I 1 I 1 I 1
\ 1 \ 1 \ 1 \ 1
\ / \ / \ / \ /
N L N ’\ < '\
, ~a - \ , ~--- , ~-=-- / S

« Step 1: construct (n + 1)/2 elementary heaps storing one element each
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Bottom-Up Heap Construction — example (cont’d)
16,15,4,12,6,7,23,20,25,9,11,17,5,8,14
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« Step 2: construct (n + 1)/4 heaps, each storing three elements
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Bottom-Up Heap Construction — example (cont’d)

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

N PR N PR

4 - N 4 - \
4 N 7 N
7/ N Va N
y AN Vs AN
’ S s S
’ Mo ’ Mo
“ ;, g\ ; : g\ )i

« Step 2: the new entries might have to be swapped with their children to
preserve the heap-order property
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Bottom-Up Heap Construction — example (cont’d)

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

:e :@ : :@

« Step 3: construct (n + 1)/8 heaps, each containing 7 elements
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Bottom-Up Heap Construction — example (cont’d)

16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

« Step 3: down-heap bubbling of the new elements

EBERHARD KARLS &
UNIVERSITAT ¢
TUBINGEN

Priority Queues, Binary Heaps & Heapsort | 75



Bottom-Up Heap Construction — example (cont’d)
16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

oS8R ocENoSRC
DEOO®O®E

« Step 4: form the final heap, by adding the last entry
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Bottom-Up Heap Construction — example (cont’d)
16,15,4,12,6,7,23,20,25,9,11,17,5,8,14

:@ :a : :@

« Step 4: down-heap bubbling of the root element
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Python’s heapg Module

 Python’s standard distribution includes the heapq module, which
provides functions that allow a standard Python list to be managed

as a min-heap
e n elements are stored in list cells from L[0] through L[n — 1]

* The smallest element is at the root, L[0]

» Operations
- heappush (L, e): push element e onto list L and restore the heap-
order property

- heappop (L): pop and return the element with the smallest value from
the list L, and re-establish the heap-order property

- heappushpop (L, e): push element e on the list L and then pop and
return the smallest element

- heapify(L): transform an unordered list to satisfy the heap-order
property in O(n) time using the bottom-up construction algorithm
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Sorting — Wrap-up

Algorithm _______[Time ________[Notes

insertion sort 0(n?) .
quick sort O(nlogn) .
heap sort O(nlogn) .

EBERHARD KARLS
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in-place
slow, but good for
small inputs

in-place,
randomized
fastest, good for
large inputs
in-place

fast, good for large
inputs
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Remember Merge Sort

» Another instance of sorting algorithm based on the divide-and-
conquer paradigm, just like quick sort

 To sort a sequence S with n items using merge sort:

1. Divide: If S has zero or one element, return S immediately; it
is already sorted; otherwise, if S has at least two elements,
remove all the elements from S and put them in two
sequences, S; (containing the first |[n/2] elements) and S,
(containing the remaining [n/2] elements)

2. Conquer: Recursively sort sequences S; and S,

3. Combine: Put back the elements into S by merging the sorted
sequences S; and S, into a sorted sequence
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Merge Sort - Algorithm

OO\ B W IN =

Pt e
A LN = OO

def merge_sort(S):
Sort the elements of Python list S using the merge-sort algorithm.

n = len(S)
if n <2

return
4 divide
mid =n // 2
S1 = S[0:mid]
S2 = S[mid:n]
# conquer (with recursion)
merge_sort(S1)
merge_sort(S2)
# merge results
merge(S1, S2, S)
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# list is already sorted
# copy of first half
# copy of second half

# sort copy of first half
# sort copy of second half

# merge sorted halves back into S
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Merge Sort — Algorithm (cont’d)

1 def merge(S1, S2, S):
2 """Merge two sorted Python lists S1 and S2 into properly sized list S."""
3 i=j)=0
4 whilei+ j < len(S):
5 if j == len(S2) or (i < len(S1) and S1[i] < S2[j]):
6 S[i+j] = S1]i] # copy ith element of S1 as next item of S
7 i +=1
8 else:
9 S[i+j] = S2J[j] # copy jth element of S2 as next item of S
10 J+=1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
S1 [ 25 [ s [in]iz]ia]is S1 [ 2]5 [ 8 [in]i2]ia]1s
1 2 3 4 5 6 0 1 2 3 4 5 6
S, |3 ]9 [10]18]19]22]25 Sy [ 3 ]9 [10]18[19]22]25
015\3\521\‘5678910111213 012;45678910111213
s{zfafsfsfol | | | [ [ [ [ [ ] s{2fsfsfsfofio] | [ [ [ [ ][]
i+ ] i+
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Sorting — Wrap-up

insertion sort 0(n?)

quick sort O(nlogn)
heap sort O(nlogn)
merge sort O(nlogn)
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in-place
slow, but good for
small inputs

in-place,
randomized
fastest, good for
large inputs

in-place
fast, good for large
inputs

fast, sequential data
access, good for
very large datasets
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Stable Sorting

* When sorting key-value pairs, an important issue is how are equal
keys handled

» Given the sequence S = ((kg, vg), ..., (kn—1,Vn,-1)), We say that a
sorting algorithm is stable if, for any two entries (k;, v;) and (k;, v;)
such that k; = k; and (k;, v;) precedes (k;, v;) in S before sorting,
the entry (k;, v;) will also precede (k;, v;) after sorting
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Sorting — Wrap-up

insertion sort 0(n?) * in-place
» slow, but good for
small inputs
« stable
quick sort O(nlogn) * in-place, randomized
» fastest, good for large
inputs
* not stable
heap sort O(nlogn) * in-place
» fast, good for large
inputs

* not stable

merge sort O(nlogn) * not in-place
« fast, sequential data

access, good for very
large datasets
« stable
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Timsort — a hybrid sorting algorithm

* Developed by Tim Peters for Python, in 2001

« Currently the default sorting algorithm in Python & Java

« Takes advantage of consecutive ordered elements — natural runs
« Collects elements into runs, then simultaneously merges the runs
* hybrid between binary insertion sort and merge sort

This describes an adaptive, stable, natural mergesort, modestly called
timsort (hey, I earned it <wink>). It has supernatural performance on many
kinds of partially ordered arrays (less than lg(N!) comparisons needed, and
as few as N-1), yet as fast as Python's previous highly tuned samplesort
hybrid on random arrays.

In a nutshell, the main routine marches over the array once, left to right,
alternately identifying the next run, then merging it into the previous
runs "intelligently”. Everything else is complication for speed, and some
hard-won measure of memory efficiency.

* From https://bugs.python.org/file4451/timsort.txt
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Sorting — Wrap-up

insertion sort 0(n?%) - in-place
* slow, but good for small
inputs
+ stable
quick sort O(nlogn) » in-place, randomized
» fastest, good for large
inputs
* not stable
heap sort O(nlogn) * in-place
» fast, good for large inputs
* not stable
merge sort O(nlogn) * usually, not in-place
+ fast, sequential data
access, good for very
large datasets
+ stable
timsort O(nlogn) * in-place
+ stable
» fast, good for large data
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Bonus round
Bucket Sort & Radix Sort
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Bucket Sort

 consider a sequence S containing n (key, value) entries

- the keys are integers in the range [O,N — 1], N = 2
- sorting S according to the keys is possible in O(n + N) time
- not using comparisons

* Phase 1

- use keys as indices into a bucket array B, indexed from 0 to N

- an entry with key k is placed into the bucket B[k] — also an
array

- add all entries of S to B
 Phase 2

- add the sorted entries back to S by reading the contents of each
bucket of B, in order
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Bucket Sort - Example

* Key range [0, 9]
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Bucket Sort - Algorithm

Algorithm bucketSort(S):

Input: Sequence S of entries with integer keys in the range [0, N — 1]
Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty
for each entry ein S do
k = the key of e
remove e from S and insert it at the end of bucket (sequence) B[k]
fori =0toN—-1do
for each entry e in sequence BJ[i] do
remove e from B[i] and insert it at the end of S
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Bucket Sort — Running Time

 Phase 1

- adding sequence elements to bucket array
- O(n) time
* Phase 2
- puting back the sorted entries into S
- 0O(n+ N) time
* Bucket sort runsin O(n + N) time

» stable sort

» efficient when N is small compared ton, e.g. N =0(n), N =
O(nlogn)

 performance gets worse as N grows compared to n
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Radix Sort

« suppose we want to sort entries where the keys are pairs (k, [)
e k,lintegersin [0,N — 1]
g (kl, ll) < (kz,lz) |f kl < kz or |f k1 — kz and ll < lz

» radix sort sorts a sequence with keys that are pairs by applying the
stable bucket sort algorithm on the sequence twice

- first using the second component, [
- then using the first component, k
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Radix Sort - Algorithm

Algorithm radix sort(S, N)
Input sequence S of d-tuples such

that (O, ..., 0) < (xy, ..., X;) and
(X eens X)) <(N—-1, ..., N=1)
for each tuple (x, ..., X;) In S
Output sequence S sorted 1n
lexicographic order

for i < d downto |
bucket sort(S, N)

« radix sortrunsin O(d(n+ N)) time
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Radix Sort - Example

* Sorting a sequence of 4-bit integers

) @9 (o) (o) oo
w9 9 [Mo) @) @
o) = (00) = @) = @i = (o
o) o) @9 (o) (oo
1110 0001 1110 1110 1110
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Thank you.
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Notation

e | x| indicates the floor of x, that is, the largest integer k such that
k <x

e [x] indicates the ceiling of x, that is, the smallest integer m such
thatx <m
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