
Corina Dima
corina.dima@uni-tuebingen.de

Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Analysis of Algorithms

Analysis of Algorithms | 2

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

1. Python Primer
2. Object-Oriented Programming

Don’t forget to register – registration closes tonight!

Analysis of Algorithms | 3

https://dsacl3-2019.github.io/

https://dsacl3-2019.github.io/

Analysis of Algorithms | 4

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

3. Algorithm Analysis

v experimental studies
v seven functions
v asymptotic analysis

Analysis of Algorithms | 5

AlgorithmInput Output

Running Time

• The running time of an
algorithm typically grows with
the input size.

• But may also vary for inputs of
the same size

• Running time is influenced by
the hardware and software
environment

Analysis of Algorithms | 6

0

20

40

60

80

100

120

R
un

ni
ng

 T
im

e

1000 2000 3000 4000
Input Size

best case
average case
worst case

Experimental Study

• Write a program implementing
the algorithm

• Run the program with inputs of
varying size and composition,
recording the time needed

• Analyze the results

Analysis of Algorithms | 7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

or using clock() or the timeit module

Limitations of Experiments

Analysis of Algorithms | 8

Action Challenge

Limitations of Experiments

Analysis of Algorithms | 9

Action Challenge

Write a program implementing the
algorithm

Algorithm must be fully
implemented before performing an
experimental study

Limitations of Experiments

Analysis of Algorithms | 10

Action Challenge

Write a program implementing the
algorithm

Algorithm must be fully
implemented before performing an
experimental study

Run the program with inputs of
varying size and composition,
recording the time needed

Experiments can only be done on a
limited set of inputs

Limitations of Experiments

Analysis of Algorithms | 11

Action Challenge

Write a program implementing the
algorithm

Algorithm must be fully
implemented before performing an
experimental study

Run the program with inputs of
varying size and composition,
recording the time needed

Experiments can only be done on a
limited set of inputs

Analyze the results Experimental runs of two different
algorithms are difficult to compare
directly unless the experiments are
performed in the same hardware
and software environments

Beyond Experimental Analysis

• An approach to analyzing the efficiency of algorithms that:

1. Can be used to evaluate the relative efficiency of two
algorithms independently of the hardware and software
environment

2. Can be performed by studying a high-level description of the
algorithm (pseudocode), without actually implementing it

3. Takes into account all possible inputs

4. Characterizes running time as a function of the input size, n

Analysis of Algorithms | 12

Theoretical Analysis

• Perform the analysis directly on a high-level description of the
algorithm

• Count the number of primitive operations that are executed,
and use this number, t, as a measure of the running time of the
algorithm

Analysis of Algorithms | 13

Primitive Operations

• Basic computations performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the programming language

• Assumed to take a constant amount of time in the RAM model

Analysis of Algorithms | 14

Examples of Primitive Operations

• Assigning an identifier to an object
• Determining the object associated with an identifier
• Performing an arithmetic operation (e.g. adding two numbers)
• Comparing two numbers
• Accessing a single element of a list by index
• Calling a function
• Returning from a function

Analysis of Algorithms | 15

Focusing on Worst-Case Input

• An algorithm might run faster on some inputs that it does on others
of the same size

• Express the running time of an algorithm as a function of the input
size obtained by taking the average over all possible inputs of the
same size

• Challenging: requires defining a probability distribution over the set
of inputs

• Solution: characterize running times in terms of the worst case, as
a function of the input size, n, of the algorithm

• Easier: only need to identify the worst-case input
• Plus: performing well on the worst-case input means that the

algorithm needs to do well on every input

Analysis of Algorithms | 16

• Associate, with each algorithm, a function f(n) that
characterizes the number of primitive operations that
are performed as a function of the input size n

Analysis of Algorithms | 17

Seven Important Functions in Algorithm Analysis

1. Constant ! " = $
2. Logarithmic ! " = %&'(", b > 1
3. Linear ! " = "
4. N-log-N ! " = " log "
5. Quadratic ! " = "0
6. Cubic, other polynomials ! " = "1
7. Exponential ! " = 23, 2 > 0

Analysis of Algorithms | 18

The Constant Function

• " # = %, '() *(+, '-.,/ 0(1*2312 0
• No matter the n, the function assigns the value c

• c is a constant, e.g. c = 5, c = 27, c = 256

• But will use typically 7 1 = 1, given that any other constant
function ' 1 = 0 can be written as ' 1 = 07(1)

• Simple, but helps characterize the number of steps needed to do a
basic operation like adding or comparing two numbers

Analysis of Algorithms | 19

The Logarithm Function

• " # = %&'(#, * > 1
• Defined as: - = ./012 34 526 /2.7 34 *8 = 2
• By definition, ./011 = 0
• * is called the base of the logarithm

• The most commonly used base is 2: a common operation is to
repeatedly divide the input in half

Analysis of Algorithms | 20

The Linear Function

• " # = #
• Given an input value n, assigns the value itself

• Arises in algorithm analysis any time we have to do a single
operation for each of n elements, e.g.

- Comparing a number x to each element of a sequence of size n

- Counting the number of elements in a sequence

Analysis of Algorithms | 21

The N-log-N Function

• " # = # %&'#
• Base 2 logarithm

• Also called the linearithmic function (Sedgewick & Wayne, 2011)

• Grows a little more rapidly than the linear function, and a lot less
rapidly than the quadratic function

• An n-log-n algorithm is usually preferable to a quadratic algorithm

Analysis of Algorithms | 22

The Quadratic Function

• " # = #%

• Given an input the function assigns the product of n with itself

• Appears in the analysis of algorithms because of nested loops,
where the inner loop performs a linear number of operations, and
the outer loop is performed a linear number of times

• Also appears in nested loops where the first iteration uses one
operation, the second two operations, the third three operations
etc., where the number of operations is

&
'()

*
+ = 1 + 2 + 3 + …+ 1 − 2 + 1 − 1 + 1 =

Analysis of Algorithms | 23

The Quadratic Function

• " # = #%

• Given an input the function assigns the product of n with itself

• Appears in the analysis of algorithms because of nested loops,
where the inner loop performs a linear number of operations, and
the outer loop is performed a linear number of times

• Also appears in nested loops where the first iteration uses one
operation, the second two operations, the third three operations
etc., where the number of operations is

&
'()

*
+ = 1 + 2 + 3 + …+ 1 − 2 + 1 − 1 + 1 = 1(1 + 1)

2

Analysis of Algorithms | 24

The Quadratic Function

• " # = #%

• Given an input the function assigns the product of n with itself

• Appears in the analysis of algorithms because of nested loops,
where the inner loop performs a linear number of operations, and
the outer loop is performed a linear number of times

• Also appears in nested loops where the first iteration uses one
operation, the second two operations, the third three operations
etc., where the number of operations is

&
'()

*
+ = 1 + 2 + 3 + …+ 1 − 2 + 1 − 1 + 1 = 1(1 + 1)

2

Analysis of Algorithms | 25

Card Friedrich Gauss, 1777 - 1855

The Cubic Function and Other Polynomials

• " # = #%

• " # = &' + &)# + &*#* + &%#% + …+ &,#,, where
-., -0, -1, -2, … , -3 are constants called the coefficients of the
polynomial, and -3≠ 0.

• 7 indicates the highest power of the polynomial and is called the
degree of the polynomial

• Examples

- 9 : = 2 + 5: + :1

- 9 : = 1 + :2

Analysis of Algorithms | 26

The Exponential Function

• " # = %#, % > (
•) is called the base, * is called the exponent

• + * assigns to the input n the value obtained by multiplying the
base b a total number of n times

• Appears in the analysis of algorithms where we have a loop that
starts by performing one operation and then e.g. doubles the
number of operations performed with each iteration – at the nth
iteration the number of operations performed is 2-.

.
/01

-
2/ = 1 + 2 + 25 + …+ 2-

Analysis of Algorithms | 27

The Exponential Function

• " # = %#, % > (
•) is called the base, * is called the exponent

• + * assigns to the input n the value obtained by multiplying the
base b a total number of n times

• Appears in the analysis of algorithms where we have a loop that
starts by performing one operation and then e.g. doubles the
number of operations performed with each iteration – at the nth
iteration the number of operations performed is 2-.

.
/01

-
2/ = 1 + 2 + 25 + …+ 2- = 2-78 − 1

2 − 1

Analysis of Algorithms | 28

Comparing Growth Rates

constant logarithm linear n-log-n quadratic cubic exponential
1 log % % % log % %& %' 2)

Analysis of Algorithms | 29

Comparing Growth Rates

1 100 1⋅104 1⋅106 1⋅108 1⋅1010 1⋅1012

1⋅10-6

1⋅10-4

0.01

100

1⋅104

1⋅106

1⋅108

1⋅1010

1⋅1012

1⋅1014

1⋅1016

1⋅1018

1⋅1020

1⋅1022

1⋅1024

1⋅1026

1⋅1028

1⋅1030

f(n) = n
linear

f(n) = n log n
linearithmic

f(n) = n2
quadratic

f(n) = 1
constant

f(n)=log n

f(n) = n3
cubic

f(n)=2ⁿ

exponential

Analysis of Algorithms | 30

Comparing Growth Rates

Analysis of Algorithms | 31

Comparing Growth Rates

Analysis of Algorithms | 32

Better Hardware?

Running Time New Maximum Problem Size
400# 256'
2#(16', because 16(= 256
2+ ' + 8, because 2. = 256

Analysis of Algorithms | 33

• The importance of a good algorithm goes beyond what can be solved
effectively on a given computer

• Suppose a hardware speedup of 256 times – algorithm with given
running times run 256 times faster on the new computer

• ' is the size of the previous maximum problem size

Asymptotic Algorithm Analysis

• “big-picture approach”: it is often enough just to know that the
running time of an algorithm grows proportionally to n

• Analyze algorithms using a mathematical notation for functions
that disregard constant factors

• Characterize running times of algorithms by using functions that
map the size of the input, n, to values that correspond to the main
factor that determines the growth rate in terms of n

• Analyze an algorithm by estimating the number of primitive
operations executed up to a constant factor

Analysis of Algorithms | 34

Counting Primitive Operations

Analysis of Algorithms | 35

Step 1 Step 3 Step 4 Step 5 Step 6 Step 7
2 ops 2 ops 2n ops 2n ops 0 to n ops 1 op

Constant Factors

• The growth rate is not affected by
- Constant factors
- Lower-order terms

Analysis of Algorithms | 36

10
-6
0

10
-5
0

10
-4
0

10
-3
0

10
-2
0

10
-1
0

10
0

10
10

10
20

10
30

10
40

10
50

10
60

10-30

10-20

10-10

100

1010

1020

1030

y = x2

y = 2x2+7

y=x
y = 3x+1

Big-Oh Notation

• Given functions !(#) and % # ,
we say that !(#) is &(% #) if
there is a real constant ' > 0
and an integer constant #* ≥ 1
such that

! # ≤ ' %(#) for # ≥ #*

• Example: 2# + 10 is &(#)
- 2# + 10 ≤ '#

Analysis of Algorithms | 37

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Big-Oh Notation

• Given functions !(#) and % # ,
we say that !(#) is &(% #) if
there is a real constant ' > 0
and an integer constant #* ≥ 1
such that

! # ≤ ' %(#) for # ≥ #*

• Example: 2# + 10 is &(#)
- 2# + 10 ≤ '#
- ' − 2 # ≥ 10
- # ≥ 2*

345
- Pick ' = 3 and #* = 10

Analysis of Algorithms | 38

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Big-Oh Notation

Analysis of Algorithms | 39

Big-Oh Example

• Example: !" is not # !

Analysis of Algorithms | 40

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

Big-Oh Example

• Example: !" is not # !
- !" ≤ &!
- ! ≤ &
- The above inequality cannot

be satisfied since & must be
a constant

Analysis of Algorithms | 41

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2
100n
10n
n

More Big-Oh Examples

• 7# − 2 is & #

• 3#(+ 20#+ + 5 is & #(

• 3 log # + 5 is &(log #)

Analysis of Algorithms | 42

More Big-Oh Examples

• 7# − 2 is & #
- Need ' > 0 and #* ≥ 1 such that 7# − 2 ≤ '# for # ≥ #*.
- 7# − 2 ≤ 7# − 2# ≤ 5#; this is true for ' = 5 and #* = 1.

• 3#3 + 20#5 + 5 is & #3
- Need ' > 0 and #* ≥ 1 such that 3#3 + 20#5 + 5 ≤ '#3 for # ≥
#*

- 3#3 + 20#5 + 5 ≤ 3#3 + 20#3 + 5#3 ≤ (3 + 20 + 5)#3; this is
true for ' = 28 and #* = 1.

• 3 log # + 5 is &(log #)
- Need ' > 0 and #* ≥ 1 such that 3 log # + 5 ≤ ' log # for # ≥ #*
- 3 log # + 5 ≤ 8 log #; this is true for ' = 8 and #* = 2 (log 1 = 0)

Analysis of Algorithms | 43

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the growth rate of a
function

• The statement �f(n) is O(g(n))� means that the growth rate of f(n) is
no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions according to their
growth rate

Analysis of Algorithms | 44

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

Big-Oh Rules

• If !(#) is a polynomial of degree %, ! # = '(+ '*# + '+#+ +
',#, + …+ '.#., then !(#) is / #. , i.e.

- Drop lower-order terms
- Drop constant factors

• Use the smallest possible class of functions
- 2# is /(#) instead of 2# is / #+

• Use the simplest expression of the class
- 3# + 5 is /(#) instead of 3# + 5 is /(3#)

Analysis of Algorithms | 45

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running
time in big-Oh notation

• To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed

as a function of the input size
- We express this function with big-Oh notation

• Example:
- We say that algorithm find_max �runs in O(n) time�

Analysis of Algorithms | 46

Example: Computing Prefix Averages

• Given a sequence ! consisting of " numbers, compute a sequence
such that A[%] is the average of elements ! 0 ,… , ! % , for % =
0,… , " − 1:

% = ∑./01 ![2]
% + 1 = ! 0 + ! 1 +⋯+ ![%]

% + 1
• #[%] is the %-th prefix average of !

Analysis of Algorithms | 47

0 1 2 3 4 5
S 20 10 3 3 14 4
A 20 15 11 9 10 9

Prefix Averages 1

Analysis of Algorithms | 48

• What is the running time of the following algorithm for computing
prefix averages?

Prefix Averages 1: Analysis

• The running time of the algorithm is ! 1 + 2 + 3 +⋯+ '

• The sum of the first n integers is (((*+)- = (/*(
- = +

-'
- + +

-'

• prefix averages 1 runs in ! '- time

Analysis of Algorithms | 49

0 1 2 3 4 5
S 20 10 3 3 14 4

sum over how many elements? 1 2 3 4 5 6

Prefix Averages 2: Using sum()

• Use a Python function to simplify the code

Analysis of Algorithms | 50

Prefix Averages 3: Linear Time

• The following algorithm computes prefix averages by keeping a
running sum

Analysis of Algorithms | 51

Prefix Averages 3: Linear Time

• The following algorithm computes prefix averages by keeping a
running sum

• This algorithm runs in ! " time

Analysis of Algorithms | 52

Relatives of Big-Oh

• big-Oh notation (O)
- Provides an asymptotic way of saying that a function is “less

than or equal to” another function

• big-Omega notation (Ω)
- Provides an asymptotic way of saying that a function grows at a

rate that is “greater than or equal to” that of another.

• big-Theta notation (Θ)
- Allows us to say that two functions “grow at the same rate” up

to constant factors

Analysis of Algorithms | 53

Big-Omega (!)

• Let "($) and &($) be functions mapping positive integers to
positive real numbers

• "($) is Ω(&($)) if &($) is)(" $), that is, there is a real constant
* > 0 and an integer constant $- ≥ 1 such that

" $ ≥ * & $ for $ ≥ $-
• Example: Show that 3$ log $ − 2$ is Ω $ log $.

Analysis of Algorithms | 54

Big-Omega (!)

• Let "($) and &($) be functions mapping positive integers to
positive real numbers

• "($) is Ω(&($)) if &($) is)(" $), that is, there is a real constant
* > 0 and an integer constant $- ≥ 1 such that

" $ ≥ * & $ for $ ≥ $-
• Example: 3$ log $ − 2$ is Ω $ log $

- 3$ log $ − 2$ = $ log $ + 2 $ log $ − 2$ =
$ log $ + 2$(log $ − 1) ≥ $ log $ for $ ≥ 2; hence * = 1 and
$- = 2.

Analysis of Algorithms | 55

Big-Theta (!)

• #(%) is Θ (% if #(%) is)((%) and #(%) is Ω(((%)), that is,
there are real constants +, > 0 and +,, > 0 and an integer constant
%/ ≥ 1 such that

+,(% ≤ #(%) ≤ +,,((%), for % ≥ %/

• Example: Show that 3% log % + 4% + 5 log % is Θ % log % .

Analysis of Algorithms | 56

Big-Theta (!)

• #(%) is Θ (% if #(%) is)((%) and #(%) is Ω(((%)), that is,
there are real constants +, > 0 and +,, > 0 and an integer constant
%/ ≥ 1 such that

+,(% ≤ #(%) ≤ +,,((%), for % ≥ %/

• Example: 3% log % + 4% + 5 log % is Θ(% log %)
- 3% log % ≤ 3% log % + 4% + 5 log % ≤ 3 + 4 + 5 % log %, for % ≥
2, hence +, = 3, +,, = 12, %/ = 2.

Analysis of Algorithms | 57

Intuition for Asymptotic Notation

• big-Oh
- "($) is &(' $) if "($) is asymptotically less than or equal to
'($)

• big-Omega
- "($) is Ω('($)) if "($) is asymptotically greater than or equal to

g(n)

• big-Theta
- "($) is Θ('($)) if "($) is asymptotically equal to '($)

Analysis of Algorithms | 58

Beware of Large Constants

• The function ! " = 10&''" is ((")
• If we were to compare it to 10" log ", we should prefer the
((" log ")-time algorithm, although the linear time algorithm is
asymptotically faster

• 10&''= one googol

• If the asymptotic notations hide very large constants, they can be
misleading

Analysis of Algorithms | 59

Is It Efficient?

• Any algorithm running in !(# log #) time (with a reasonable
constant factor) should be considered efficient

• An !(#() algorithm may be fast in some contexts

• An algorithm running in ! 2* time should never be considered
efficient

Analysis of Algorithms | 60

More Examples of Algorithm Analysis

•len(data), data[j] - where data is an instance of Python’s
list class - constant-time operations, both run in ! 1 time

Analysis of Algorithms | 61

Three Way Disjointness

• Suppose three sequences of numbers, A, B and C;

• no individual sequence contains duplicate values – but there may
be some numbers that are in two or three of the sequences

• Determine if the intersection of the three sequences in empty –
namely - that there is no element ! such that ! ∈ #, ! ∈ % and ! ∈
&

Analysis of Algorithms | 62

Three-Way Set Disjointness

Analysis of Algorithms | 63

Three-Way Set Disjointness

Analysis of Algorithms | 64

• Worst-case running time is ! "# , because it loops through each
possible triple of values from the three sets to see if the values are
equivalent

Three-Way Set Disjointness: Take 2

• Observation: once inside the body of the loop over B, if selected
elements ! and " do not match each other, it don’t make sense to
iterate through the values of C looking for a matching triple

Analysis of Algorithms | 65

Three-Way Set Disjointness: Take 2

• Observation: once inside the body of the loop over B, if selected
elements ! and " do not match each other, it don’t make sense to
iterate through the values of C looking for a matching triple

• Worst-case running time is # $%

Analysis of Algorithms | 66

Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from
each other?

Analysis of Algorithms | 67

Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from
each other?

Analysis of Algorithms | 68

outer loop, j 0 1 2 … n-2 n-1
inner loop, k n-1 n-2 n-3 1 0

Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from
each other?

• " − 1 + " − 2 +⋯+ 2 + 1 = * *+,
- ;

• worst-case running time proportional to /("-)
Analysis of Algorithms | 69

outer loop, j 0 1 2 … n-2 n-1
inner loop, k n-1 n-2 n-3 1 0

Element Uniqueness: Using Sorting

• Idea: sort the sequence first; any duplicates are then guaranteed
to be next to each other

Analysis of Algorithms | 70

Element Uniqueness: Using Sorting

• Idea: sort the sequence first; any duplicates are then guaranteed
to be next to each other

• Sorting: !(# log #) - details next week
• Once the sequence is sorted, a single loop is needed to find

duplicates – which runs in !(#) time
• Therefore the entire algorithm runs in !(# log #). Better?

Analysis of Algorithms | 71

! " #$% " better than !("')

Analysis of Algorithms | 72

Binary Search (review from Java 2)

• One of the most important computer algorithms
• Locate a target value within a sorted sequence of ! elements
• If the sequence is unsorted, the standard approach is to use a loop

to examine each element – sequential search, linear time, "(!)
• If the sequence is sorted and indexable, there is a much more

efficient algorithm
• Intuition: think of how you look up a word in a dictionary

- Open at a certain page; if the word is on that page, stop
- if word should be before in lexicographic order, continue looking

in the first half
- Otherwise continue looking in the second half

Analysis of Algorithms | 73

Binary Search

Analysis of Algorithms | 74

Binary Search: Analysis

• Proposition: The binary search algorithm runs in ! log % time for a
sorted sequence with % elements.

• Justification
- With each recursive call the number of candidate entries still to

be searched is given by the value ℎ'(ℎ − *+, + 1
- The number of remaining candidates is reduced by at least one

half with each recursive call
- Initially, *+, = 0, ℎ'(ℎ = % − 1,2'3 = (*+, + ℎ'(ℎ)/2
- The number of candidates to be searched at the next recursive

call is either
§ 2'3 − 1 − *+, + 1 = 89:;<=><? − low ≤ <=>< B89:;C

?
or

§ ℎ'(ℎ − 2'3 + 1 + 1 = high − 89:;<=><
? ≤ <=>< B89:;C

?

Analysis of Algorithms | 75

Binary Search: Analysis (cont’d)

- The initial number of candidates is !;
- After the 1st call in a binary search, it is at most #$ =

#
$&

- After the 2nd call, it is at most #' =
#
$(

- In general, after the jth call, it is at most #$)
- In the worst case (target not found), binary search stops when

there are no more candidate entries
- The maximum number of recursive calls is the smallest integer

such that #$* < 1, therefore - > log$!
- Thus - = log$! + 1, so binary search runs in 3(log$!) time.

Analysis of Algorithms | 76

Binary Search: Analysis (cont’d)

• "(log ') binary search - much better than " ' sequential search

• Think for ' = 1,000,000,000
• "(log ') ≈ 29.897

Analysis of Algorithms | 77

Math You May Need to Review

• Summations

• Logarithms and Exponents

• See Appendix B.

• Extra resource:
- https://www.khanacademy.org/math/alge

bra2/x2ec2f6f830c9fb89:logs

Analysis of Algorithms | 78

• Properties of logarithms

- log% &' = log% & + log% '
- log% *+ = log% & − log% '
- log% &- = . log% &
- log% . = /012 -

/012 %

• Properties of exponentials

- .%34 = .%.4
- .%4 = (.%)4

- -
7

-8 = .%94
- :/018 - = ./018 %

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs

Thank you.

