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1. Python Primer
2. Object-Oriented Programming



Don’t forget to register – registration closes tonight!
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https://dsacl3-2019.github.io/

https://dsacl3-2019.github.io/
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Data Structures & Algorithms in Python
MICHAEL GOODRICH
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MICHAEL GOLDWASSER

3. Algorithm Analysis

v experimental studies
v seven functions
v asymptotic analysis
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AlgorithmInput Output



Running Time

• The running time of an 
algorithm typically grows with 
the input size.

• But may also vary for inputs of 
the same size

• Running time is influenced by 
the hardware and software
environment
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Experimental Study

• Write a program implementing 
the algorithm

• Run the program with inputs of 
varying size and composition, 
recording the time needed

• Analyze the results
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Limitations of Experiments
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Limitations of Experiments
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Action Challenge

Write a program implementing the 
algorithm

Algorithm must be fully 
implemented before performing an 
experimental study

Run the program with inputs of 
varying size and composition, 
recording the time needed

Experiments can only be done on a 
limited set of inputs

Analyze the results Experimental runs of two different 
algorithms are difficult to compare 
directly unless the experiments are 
performed in the same hardware 
and software environments



Beyond Experimental Analysis

• An approach to analyzing the efficiency of algorithms that:

1. Can be used to evaluate the relative efficiency of two 
algorithms independently of the hardware and software 
environment

2. Can be performed by studying a high-level description of the 
algorithm (pseudocode), without actually implementing it

3. Takes into account all possible inputs

4. Characterizes running time as a function of the input size, n
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Theoretical Analysis

• Perform the analysis directly on a high-level description of the 
algorithm

• Count the number of primitive operations that are executed, 
and use this number, t, as a measure of the running time of the 
algorithm

Analysis of Algorithms | 13



Primitive Operations

• Basic computations performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the programming language

• Assumed to take a constant amount of time in the RAM model
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Examples of Primitive Operations

• Assigning an identifier to an object
• Determining the object associated with an identifier
• Performing an arithmetic operation (e.g. adding two numbers)
• Comparing two numbers
• Accessing a single element of a list by index
• Calling a function
• Returning from a function
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Focusing on Worst-Case Input

• An algorithm might run faster on some inputs that it does on others 
of the same size

• Express the running time of an algorithm as a function of the input 
size obtained by taking the average over all possible inputs of the 
same size

• Challenging: requires defining a probability distribution over the set 
of inputs

• Solution: characterize running times in terms of the worst case, as 
a function of the input size, n, of the algorithm

• Easier: only need to identify the worst-case input
• Plus: performing well on the worst-case input means that the 

algorithm needs to do well on every input
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• Associate, with each algorithm, a function f(n) that 
characterizes the number of primitive operations that 
are performed as a function of the input size n
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Seven Important Functions in Algorithm Analysis

1. Constant ! " = $
2. Logarithmic ! " = %&'(", b > 1
3. Linear ! " = "
4. N-log-N ! " = " log "
5. Quadratic ! " = "0
6. Cubic, other polynomials ! " = "1
7. Exponential ! " = 23, 2 > 0
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The Constant Function

• " # = %, '() *(+, '-.,/ 0(1*2312 0
• No matter the n, the function assigns the value c

• c is a constant, e.g. c = 5, c = 27, c = 256

• But will use typically 7 1 = 1, given that any other constant 
function ' 1 = 0 can be written as ' 1 = 07(1)

• Simple, but helps characterize the number of steps needed to do a 
basic operation like adding or comparing two numbers
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The Logarithm Function

• " # = %&'(#, * > 1
• Defined as: - = ./012 34 526 /2.7 34 *8 = 2
• By definition, ./011 = 0
• * is called the base of the logarithm

• The most commonly used base is 2: a common operation is to 
repeatedly divide the input in half

Analysis of Algorithms | 20



The Linear Function

• " # = #
• Given an input value n, assigns the value itself

• Arises in algorithm analysis any time we have to do a single 
operation for each of n elements, e.g.

- Comparing a number x to each element of a sequence of size n

- Counting the number of elements in a sequence
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The N-log-N Function

• " # = # %&'#
• Base 2 logarithm

• Also called the linearithmic function (Sedgewick & Wayne, 2011)

• Grows a little more rapidly than the linear function, and a lot less 
rapidly than the quadratic function

• An n-log-n algorithm is usually preferable to a quadratic algorithm
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The Quadratic Function

• " # = #%

• Given an input the function assigns the product of n with itself

• Appears in the analysis of algorithms because of nested loops, 
where the inner loop performs a linear number of operations, and 
the outer loop is performed a linear number of times

• Also appears in nested loops where the first iteration uses one 
operation, the second two operations, the third three operations 
etc., where the number of operations is 

&
'()

*
+ = 1 + 2 + 3 + …+ 1 − 2 + 1 − 1 + 1 =
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The Quadratic Function
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Card Friedrich Gauss, 1777 - 1855



The Cubic Function and Other Polynomials

• " # = #%

• " # = &' + &)# + &*#* + &%#% + …+ &,#,, where 
-., -0, -1, -2, … , -3 are constants called the coefficients of the 
polynomial, and -3≠ 0.

• 7 indicates the highest power of the polynomial and is called the 
degree of the polynomial

• Examples

- 9 : = 2 + 5: + :1

- 9 : = 1 + :2
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The Exponential Function

• " # = %#, % > (
• ) is called the base, * is called the exponent

• + * assigns to the input n the value obtained by multiplying the 
base b a total number of n times

• Appears in the analysis of algorithms where we have a loop that 
starts by performing one operation and then e.g. doubles the 
number of operations performed with each iteration – at the nth
iteration the number of operations performed is 2-.

.
/01

-
2/ = 1 + 2 + 25 + …+ 2-
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The Exponential Function

• " # = %#, % > (
• ) is called the base, * is called the exponent

• + * assigns to the input n the value obtained by multiplying the 
base b a total number of n times

• Appears in the analysis of algorithms where we have a loop that 
starts by performing one operation and then e.g. doubles the 
number of operations performed with each iteration – at the nth
iteration the number of operations performed is 2-.

.
/01

-
2/ = 1 + 2 + 25 + …+ 2- = 2-78 − 1

2 − 1
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Comparing Growth Rates

constant logarithm linear n-log-n quadratic cubic exponential
1 log % % % log % %& %' 2)
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Comparing Growth Rates

1 100 1⋅104 1⋅106 1⋅108 1⋅1010 1⋅1012
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f(n) = n
linear

f(n) = n log n
linearithmic

f(n) = n2
quadratic

f(n) = 1
constant

f(n)=log n

f(n) = n3
cubic

f(n)=2ⁿ
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Comparing Growth Rates
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Comparing Growth Rates
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Better Hardware?

Running Time New Maximum Problem Size
400# 256'
2#( 16', because 16( = 256
2+ ' + 8, because 2. = 256
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• The importance of a good algorithm goes beyond what can be solved 
effectively on a given computer

• Suppose a hardware speedup of 256 times – algorithm with given 
running times run 256 times faster on the new computer

• ' is the size of the previous maximum problem size



Asymptotic Algorithm Analysis

• “big-picture approach”: it is often enough just to know that the 
running time of an algorithm grows proportionally to n

• Analyze algorithms using a mathematical notation for functions 
that disregard constant factors

• Characterize running times of algorithms by using functions that 
map the size of the input, n, to values that correspond to the main 
factor that determines the growth rate in terms of n

• Analyze an algorithm by estimating the number of primitive 
operations executed up to a constant factor
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Counting Primitive Operations
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Step 1 Step 3 Step 4 Step 5 Step 6 Step 7
2 ops 2 ops 2n ops 2n ops 0 to n ops 1 op



Constant Factors

• The growth rate is not affected by 
- Constant factors
- Lower-order terms
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Big-Oh Notation

• Given functions !(#) and % # , 
we say that !(#) is &(% # ) if 
there is a real constant ' > 0
and an integer constant #* ≥ 1
such that

! # ≤ ' %(#) for # ≥ #*

• Example: 2# + 10 is &(#)
- 2# + 10 ≤ '#
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Big-Oh Notation

• Given functions !(#) and % # , 
we say that !(#) is &(% # ) if 
there is a real constant ' > 0
and an integer constant #* ≥ 1
such that

! # ≤ ' %(#) for # ≥ #*

• Example: 2# + 10 is &(#)
- 2# + 10 ≤ '#
- ' − 2 # ≥ 10
- # ≥ 2*

345
- Pick ' = 3 and #* = 10
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Big-Oh Notation
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Big-Oh Example

• Example: !" is not # !
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Big-Oh Example

• Example: !" is not # !
- !" ≤ &!
- ! ≤ &
- The above inequality cannot 

be satisfied since & must be 
a constant
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More Big-Oh Examples

• 7# − 2 is & #

• 3#( + 20#+ + 5 is & #(

• 3 log # + 5 is &(log #)
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More Big-Oh Examples

• 7# − 2 is & #
- Need ' > 0 and #* ≥ 1 such that 7# − 2 ≤ '# for # ≥ #*.
- 7# − 2 ≤ 7# − 2# ≤ 5#; this is true for ' = 5 and #* = 1.

• 3#3 + 20#5 + 5 is & #3
- Need ' > 0 and #* ≥ 1 such that 3#3 + 20#5 + 5 ≤ '#3 for # ≥
#*

- 3#3 + 20#5 + 5 ≤ 3#3 + 20#3 + 5#3 ≤ (3 + 20 + 5)#3; this is 
true for ' = 28 and #* = 1.

• 3 log # + 5 is &(log #)
- Need ' > 0 and #* ≥ 1 such that 3 log # + 5 ≤ ' log # for # ≥ #*
- 3 log # + 5 ≤ 8 log #; this is true for ' = 8 and #* = 2 (log 1 = 0)

Analysis of Algorithms | 43



Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the growth rate of a 
function

• The statement �f(n) is O(g(n))� means that the growth rate of f(n) is 
no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions according to their 
growth rate
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f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes



Big-Oh Rules

• If !(#) is a polynomial of degree %, ! # = '( + '*# + '+#+ +
',#, + …+ '.#., then !(#) is / #. , i.e.

- Drop lower-order terms
- Drop constant factors

• Use the smallest possible class of functions
- 2# is /(#) instead of 2# is / #+

• Use the simplest expression of the class
- 3# + 5 is /(#) instead of 3# + 5 is /(3#)
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Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running 
time in big-Oh notation

• To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed 

as a function of the input size
- We express this function with big-Oh notation

• Example:
- We say that algorithm find_max �runs in O(n) time�
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Example: Computing Prefix Averages

• Given a sequence ! consisting of " numbers, compute a sequence 
# such that A[%] is the average of elements ! 0 ,… , ! % , for % =
0,… , " − 1:

# % = ∑./01 ![2]
% + 1 = ! 0 + ! 1 +⋯+ ![%]

% + 1
• #[%] is the %-th prefix average of !
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0 1 2 3 4 5
S 20 10 3 3 14 4
A 20 15 11 9 10 9



Prefix Averages 1
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• What is the running time of the following algorithm for computing 
prefix averages?



Prefix Averages 1: Analysis

• The running time of the algorithm is ! 1 + 2 + 3 +⋯+ '

• The sum of the first n integers is (((*+)- = (/*(
- = +

-'
- + +

-'

• prefix averages 1 runs in ! '- time
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0 1 2 3 4 5
S 20 10 3 3 14 4

sum over how many elements? 1 2 3 4 5 6



Prefix Averages 2: Using sum()

• Use a Python function to simplify the code
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Prefix Averages 3: Linear Time

• The following algorithm computes prefix averages by keeping a 
running sum
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Prefix Averages 3: Linear Time

• The following algorithm computes prefix averages by keeping a 
running sum

• This algorithm runs in ! " time
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Relatives of Big-Oh

• big-Oh notation (O)
- Provides an asymptotic way of saying that a function is “less 

than or equal to” another function

• big-Omega notation (Ω) 
- Provides an asymptotic way of saying that a function grows at a 

rate that is “greater than or equal to” that of another.

• big-Theta notation (Θ)
- Allows us to say that two functions “grow at the same rate” up 

to constant factors
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Big-Omega (!)

• Let "($) and &($) be functions mapping positive integers to 
positive real numbers

• "($) is Ω(&($)) if &($) is )(" $ ), that is, there is a real constant 
* > 0 and an integer constant $- ≥ 1 such that

" $ ≥ * & $ for $ ≥ $-
• Example: Show that 3$ log $ − 2$ is Ω $ log $ .
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Big-Omega (!)

• Let "($) and &($) be functions mapping positive integers to 
positive real numbers

• "($) is Ω(&($)) if &($) is )(" $ ), that is, there is a real constant 
* > 0 and an integer constant $- ≥ 1 such that

" $ ≥ * & $ for $ ≥ $-
• Example: 3$ log $ − 2$ is Ω $ log $

- 3$ log $ − 2$ = $ log $ + 2 $ log $ − 2$ =
$ log $ + 2$(log $ − 1) ≥ $ log $ for $ ≥ 2; hence * = 1 and 
$- = 2. 
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Big-Theta (!)

• #(%) is Θ ( % if #(%) is )(( % ) and #(%) is Ω(((%)), that is, 
there are real constants +, > 0 and +,, > 0 and an integer constant 
%/ ≥ 1 such that

+,( % ≤ #(%) ≤ +,,((%), for % ≥ %/

• Example: Show that 3% log % + 4% + 5 log % is Θ % log % .
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Big-Theta (!)

• #(%) is Θ ( % if #(%) is )(( % ) and #(%) is Ω(((%)), that is, 
there are real constants +, > 0 and +,, > 0 and an integer constant 
%/ ≥ 1 such that

+,( % ≤ #(%) ≤ +,,((%), for % ≥ %/

• Example: 3% log % + 4% + 5 log % is Θ(% log %)
- 3% log % ≤ 3% log % + 4% + 5 log % ≤ 3 + 4 + 5 % log %, for % ≥
2, hence +, = 3, +,, = 12, %/ = 2.
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Intuition for Asymptotic Notation

• big-Oh
- "($) is &(' $ ) if "($) is asymptotically less than or equal to 
'($)

• big-Omega
- "($) is Ω('($)) if "($) is asymptotically greater than or equal to 

g(n)

• big-Theta
- "($) is Θ('($)) if "($) is asymptotically equal to '($)
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Beware of Large Constants

• The function ! " = 10&''" is ((")
• If we were to compare it to 10" log ", we should prefer the 
((" log ")-time algorithm, although the linear time algorithm is 
asymptotically faster

• 10&''= one googol

• If the asymptotic notations hide very large constants, they can be 
misleading

Analysis of Algorithms | 59



Is It Efficient?

• Any algorithm running in !(# log #) time (with a reasonable 
constant factor) should be considered efficient

• An !(#() algorithm may be fast in some contexts

• An algorithm running in ! 2* time should never be considered 
efficient
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More Examples of Algorithm Analysis

•len(data), data[j] - where data is an instance of Python’s 
list class - constant-time operations, both run in ! 1 time
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Three Way Disjointness

• Suppose three sequences of numbers, A, B and C; 

• no individual sequence contains duplicate values – but there may 
be some numbers that are in two or three of the sequences

• Determine if the intersection of the three sequences in empty –
namely - that there is no element ! such that ! ∈ #, ! ∈ % and ! ∈
&
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Three-Way Set Disjointness

Analysis of Algorithms | 63



Three-Way Set Disjointness
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• Worst-case running time is ! "# , because it loops through each 
possible triple of values from the three sets to see if the values are 
equivalent



Three-Way Set Disjointness: Take 2

• Observation: once inside the body of the loop over B, if selected 
elements ! and " do not match each other, it don’t make sense to 
iterate through the values of C looking for a matching triple
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Three-Way Set Disjointness: Take 2

• Observation: once inside the body of the loop over B, if selected 
elements ! and " do not match each other, it don’t make sense to 
iterate through the values of C looking for a matching triple

• Worst-case running time is # $%
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Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from 
each other?
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Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from 
each other?
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outer loop, j 0 1 2 … n-2 n-1
inner loop, k n-1 n-2 n-3 1 0



Element Uniqueness

• Given a sequence ! with " elements, are all elements distinct from 
each other?

• " − 1 + " − 2 +⋯+ 2 + 1 = * *+,
- ;

• worst-case running time proportional to /("-)
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outer loop, j 0 1 2 … n-2 n-1
inner loop, k n-1 n-2 n-3 1 0



Element Uniqueness: Using Sorting

• Idea: sort the sequence first; any duplicates are then guaranteed 
to be next to each other
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Element Uniqueness: Using Sorting

• Idea: sort the sequence first; any duplicates are then guaranteed 
to be next to each other

• Sorting: !(# log #) - details next week
• Once the sequence is sorted, a single loop is needed to find 

duplicates – which runs in !(#) time
• Therefore the entire algorithm runs in !(# log #). Better?
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! " #$% " better than !("')
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Binary Search (review from Java 2)

• One of the most important computer algorithms
• Locate a target value within a sorted sequence of ! elements
• If the sequence is unsorted, the standard approach is to use a loop 

to examine each element – sequential search, linear time, "(!)
• If the sequence is sorted and indexable, there is a much more 

efficient algorithm
• Intuition: think of how you look up a word in a dictionary

- Open at a certain page; if the word is on that page, stop
- if word should be before in lexicographic order, continue looking 

in the first half
- Otherwise continue looking in the second half
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Binary Search 
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Binary Search: Analysis

• Proposition: The binary search algorithm runs in ! log % time for a 
sorted sequence with % elements.

• Justification
- With each recursive call the number of candidate entries still to 

be searched is given by the value ℎ'(ℎ − *+, + 1
- The number of remaining candidates is reduced by at least one 

half with each recursive call
- Initially, *+, = 0, ℎ'(ℎ = % − 1,2'3 = (*+, + ℎ'(ℎ)/2
- The number of candidates to be searched at the next recursive 

call is either
§ 2'3 − 1 − *+, + 1 = 89:;<=><? − low ≤ <=>< B89:;C

?
or

§ ℎ'(ℎ − 2'3 + 1 + 1 = high − 89:;<=><
? ≤ <=>< B89:;C

?
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Binary Search: Analysis (cont’d)

- The initial number of candidates is !;
- After the 1st call in a binary search, it is at most #$ =

#
$&

- After the 2nd call, it is at most #' =
#
$(

- In general, after the jth call, it is at most #$)
- In the worst case (target not found), binary search stops when 

there are no more candidate entries
- The maximum number of recursive calls is the smallest integer 

such that #$* < 1, therefore - > log$!
- Thus - = log$ ! + 1, so binary search runs in 3(log$ !) time.
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Binary Search: Analysis (cont’d)

• "(log ') binary search - much better than " ' sequential search

• Think for ' = 1,000,000,000
• "(log ' ) ≈ 29.897
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Math You May Need to Review

• Summations

• Logarithms and Exponents

• See Appendix B.

• Extra resource:
- https://www.khanacademy.org/math/alge

bra2/x2ec2f6f830c9fb89:logs
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• Properties of logarithms

- log% &' = log% & + log% '
- log% *+ = log% & − log% '
- log% &- = . log% &
- log% . = /012 -

/012 %

• Properties of exponentials

- .%34 = .%.4
- .%4 = (.%)4

- -
7

-8 = .%94
- :/018 - = ./018 %

https://www.khanacademy.org/math/algebra2/x2ec2f6f830c9fb89:logs


Thank you.


