EBERHARD KARLS

UNIVERSITAT
TUBINGEN

FACULTY OF
HUMANITIES

Department of General and Computational Linguistics

Hash Tables

- 0000000000000
Data Structures and Algorithms for CL lll, WS 2019-2020

Corina Dima
corina.dima@uni-tuebingen.de

MICHAEL GOODRICH

Data Structures & Algorithms in Python ROBERTO TAMASSTA
MICHAEL GOLDWASSER

Data Structures - :
& Algorithms 10.1 Maps and Dictionaries

s The Map ADT
10.2 Hash Tables
* Hash Functions
% Collision-Handling Schemes

* Load Factors, Rehashing and
Efficiency

in Python
e Rosaro Tassi © Micue H. Goowsss *» Hash Table Implementations

EBERHARD KARLS)
UNIVERSITAT %
TUBINGEN x

Hash Tables | 2

Maps

e map abstraction: unique keys are mapped to associated values
* maps are also known as associative arrays or dictionaries

* Python’s dict class is an implementation of the map ADT

Turkey Spain Greece China United States India
I

¢ \\ // l l l currency (values)

Lira Euro Yuan Dollar Rupee

associated with their

> Map of countries (keys)

* The keys are assumed to be unique, but the values are not necessarily unique

* An array-like syntax is used

- To obtain the value associated with a key: currency['Spain’]
- To remap the key to a new value: currency['Greece’] = ‘drachma’

« However, unlike in an array, indices don’t have to be consecutive — and not even numeric

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 3

The Map ADT (1) — Core Functionality

Mk] Return the value v associated with the key k in map M, if one exists;
otherwise raise a KeyError; in Python, implemented with the __getitem__
method.

M[k] = v Associate value v with key k in map M, replacing the existing value if the map

already contains an item with key equal to k. In Python, implemented using
the _ setitem__ method.

del M[k] Remove from map M the item with key equal to k; if M has no such item,
raise a KeyError. In Python implemented with the __delitem__ method.
len(M) Return the number of items in map M. In Python, implemented with the

__len__ method.

iter(M) The default iteration for a map generates a sequence of keys in the map. In
Python, implemented with the __iter__ method

— allows loops of the form: for k in M

RRRRRRRRRRRR B
UNIVERSITAT 9

TUBINGEN 7% Hash Tables | 4

The Map ADT (2)

kin M

Return True if the map contains an item with key k. In Python, implemented with the
__contains__ method.

M.get(k, d=None)

Return M[k] if key k exists in the map; otherwise return default value d. This provides a
way to query M[k] without the risk of a KeyError.

M.setdefault(k, d)

If key k exists in the map, return M[k]. If k does not exist, set M[k] = d and return that
value.

M.pop(k, d=None)

Remove the item associated with key k from the map and return its associated value v.
If key is not in the map, return default value d (or raise KeyError if d is None).

M.popitem() Remove an arbitrary key-value pair from the map, and return a (k,v) tuple representing
the removed pair. Raise KeyError if M is empty.

M.clear() Remove all key-value pairs from the map.

M.keys() Return a set-like view of all keys in M.

M.values() Return a set-like view of all values in M.

M.items() Return a set-like view of (k,v) tuples for all entries in M.

M.update(M2)

Assign M[k] = v for every (k,v) pair in M2.

RRRRRRRRRRRR
UNIVERSITAT ¢
TUBINGEN 7

Hash Tables | 5

MapBase

| class MapBase(MutableMapping):
2 """Qur own abstract base class that includes a nonpublic _ltem class.”""
3
4 e e nested _ltem class ——--—-——-mmmmmmm
5 class _ltem:
6 """ Lightweight composite to store key-value pairs as map items.”"”
7 __slots__ = '_key"', '_value'
8
9 def __init__(self, k, v):
10 self._key = k
11 self. _value = v
12
13 def __eq__(self, other):
14 return self._key == other._key # compare items based on their keys
15
16 def __ne__(self, other):
17 return not (self == other) # opposite of __eq__
18
19 def __It__(self, other):
20 return self._key < other._key # compare items based on their keys

RRRRRRRRRRRR

UNIVERSITAT Hash Tables | 6

Python’s MutableMapping Abstract Base Class

* Python’s collections module provides two abstract base classes for working with maps:
Mapping and MutableMapping

« The Mapping class contains the nonmutating behaviors supported by Python’s dict class
« The MutableMapping class extends the Mapping class to include mutating behaviours

» These are abstract base classes (ABCs) — they contain methods that are declared to be
abstract

« Such methods must be implemented by concrete subclasses

« However, the ABC provides concrete implementations that depend on the use of the
abstract implementations
- E.g. MutableMapping provides implementations for all the operations on the slide 5

- But it depends on the concrete subclass to provide implementations for the core
functionality (listed on slide 4)

- the behaviors on s. 5 can be inherited by declaring MutableMapping as a parent class

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 7

Unsorted Map Implementation

class Unsorted TableMap(MapBase):
""" Map implementation using an unordered list.

nmnnn

def __init__(self):

24 def __delitem __(self, k):
""" Create an empty map.”"" 25 """ Remove item associated with key k (raise KeyError if not found).””"
self. table = [] # list of _Item's 26 for j in range(len(self._table)):
27 if k == self._table[j]._key: # Found a match:
def __getitem __(self, k): 28 self._table.pop(j) # remove item
""" Return value associated with key k (raise KeyError if not found).””” 29 return # and quit
for item in self._table: 30 raise KeyError('Key Error: ' + repr(k))
if k == item._key: 31
return item._value 32 def __len__(self):
raise KeyError('Key Error: ' + repr(k)) 33 """ Return number of items in the map.”""
34 return len(self._table)
def __setitem__(self, k, v): 35
""" Assign value v to key k, overwriting existing value if present.”"" 36 def __iter__(self):
for item in self. table: 37 """ Generate iteration of the map's keys."""
if k == item._key: # Found a match: 3% for item in self._table: .
item. value = v 4 reassign value 39 yield item._key # yield the KEY
return # and quit

did not find match for key
self._table.append(self._ltem(k,v))

EBERHARD KARLS am
UNIVERSITAT ¢
TUBINGEN 2

Hash Tables | 8

Hash Tables

IIIIIIIIIIIIIII

UNIVERSITAT
TUBINGEN Hash Tables | 9

Warmup: Lookup Tables

* a map M supports the abstraction of using keys as indices using the M[k] syntax

» Consider a restricted setting in which a map with n items uses keys that are known to be
integers from 0 to N — 1, with N > n.

» We could then represent the map using what is known as a lookup table of size N

0 1 2 3 4 5 6 7 8 9 10
D VA C Q
Lookup table with length 11 for a map containing the items (1,D), (3,2), (6,C), (7,Q)

* However, the lookup table is not very practical

- If N » n, the map representation uses too much space
- The keys of the map must be integers

UNIVERSITAT
TUBINGEN Hash Tables | 10

Hash Tables

* Instead of requiring the keys to be integers, use a hash function to map any key to a
range 0to N — 1

« |deally, the indices (keys) obtained via a hash function should be well (uniformly)
distributed over the 0 to N — 1 range, but in practice there might be distinct keys that get
mapped to the same index

« Conceptualize the hash table as a bucket array — each bucket may manage a collection
of items that are assigned the same index by the hash function

EBERHARD KARLS
UNIVERSITAT

TUBINGEN Hash Tables | 11

Hash Functions

» The goal of a hash function h is to map each key k to an integer in the range [0, N — 1],
where N is the capacity of the bucket array for the hash table

* Instead of using directly the key k as an index in the array, which might not be
appropriate, use the hash function value, h(k), as the index

- E.g. for the bucket array A, the item (k, v) will be stored in the bucket A[h(k)]

« If two or more keys have the same hash value, then two different items will be mapped to
the same bucket in A — this is called a hash collision

» There are multiple strategies for dealing with hash collisions: separate chaining, open
addressing

* A hash function is good if:

- It maps the keys in the map as to sufficiently minimize collisions
- It is fast and easy to compute

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 12

Hash Functions (cont’d)

* A hash function, h(k) typically consists of two
parts:

1. Ahash code that maps a key k to an
integer

2. A compression function that maps the
hash code to an integer within a range of
integers, [0, N — 1] for a bucket array

« Separating the two parts makes it possible to
compute the hash code independently of the
specific hash table size

* Only the compression function depends on the
size of the hash table — important, especially
since the underlying array can be resized

EEEEEEEEEEEE
UNIVERSITAT
TUBINGEN

‘f\ Arbitrary Objects

D

\Ihash CV

+—0 0000000000000 OCGEOGCEOEOGNOSOOIN >

..-2-1012 ...

\ compression function /

1

—

012 ...

N-1

Hash Tables | 13

Hash Codes

* The hash code for an arbitrary key k is
- an integer
- doesn’t have to be in the range [0, N — 1]
- may even be negative
» The set of hash codes assigned to the keys should avoid collisions as much as possible

« If the hash codes already generate collisions, there is no way for them to be avoided in
the compression step

 (some) possible types of hash codes:

- Bit representations
- Polynomial hash codes

- Cyclic-shift hash codes

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 14

Bit Representation as a Hash Code

* For any data type X, we can take as a hash code for X an integer interpretation of its bits

- E.g. hash code for 803 could be 803

- E.g. hash code for 3.14 could be based upon an interpretation of the bits of the
floating-point representation as an integer

* Not applicable for types where the representation is longer than the desired hash code
size
- E.g. transform a 64-bit key to a 32-bit hash code

- Solution 1: discard a part of the representation (rely only on the high-order or low-order
bits) — might lead to many keys colliding, since part of the information is discarded

- Solution 2: combine all the bits from the original representation into a representation —
e.g. add the two 32-bit representations, ignoring overflow, or do an exclusive-or

Ly or Xo®x,®x,® ... Bx,_1,® is exclusive-or (XOR) (A in Python)

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 15

Polynomial Hash Codes

* For character strings or other variable-length objects that can be seen as tuples of the
form (x, x4, ..., X,—1), Where the order of the x;’s is significant, summation or exclusive-or

hash codes are not a good solution

» E.g. a 16-bit hash code for a character string s that sums the Unicode values of the
characters in s will produce collisions for common groups of strings: stop, tops, pots and
spot will all have the same hash code

* A better solution is to take into consideration the positions of each x;:

xoa" 1+ xa" %+ .+ x,a+x,_1,fora*0,a#1

 This is a polynomial in a that takes the components (x, x4, ..., x,,—1) Of an object x as its
coefficients

« can be computed in linear time using Horner’s rule

Xnoq +a(xn_y +alxp_z+ .+ a(x, +alx; +axg))...))

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 16

Polynomial Hash Codes (cont’d)

* When computing the polynomial, overflows can occur — they are typically ignored

* The choice of a has an influence over the ability of the hash code to preserve some of the
information content even in overflow cases

« Experimental studies suggest that 33, 37, 39 and 41 are good choices for a when working
with character strings that are English words

- E.g. when using 33, 37, 39 and 41 less then 7 collisions were produced (in each case)
for the hash codes of words form a 50,000 word list

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 17

Cyclic-Shift Hash Codes

« Variant of the polynomial hash code
* Replaces multiplication by a by a cyclic shift of a partial sum by a certain number of bits
 E.g. a 5-bit cyclic shift of the 32-bit value
00111101100101101010100010101000
IS
10110010110101010001010100000111

 The cyclic-shift operation has little in terms of meaning - but accomplishes the goal of
varying the bits of the hash code

* In Python a cycling-shift of bits can be obtained using the bitwise operators « and > - the
results must also be truncated to 32 or 64 bits.

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 18

Cyclic-Shift Hash Codes — Python implementation

def hash_code(s):
mask = (1 << 32) — 1 # limit to 32-bit integers
h=0
for character in s:
h =(h << 5& mask) | (h >>27) # 5-bit cyclic shift of running sum
h += ord(character) # add in value of next character
return h

EEEEEEEEEE B
UNIVERSITAT ¢
TUBINGEN 7

Hash Tables | 19

Cyclic-Shift Hash Codes (cont’d)

 As with the polynomial hash codes,
choosing the amount by which each code
should be shifted must be fine-tuned

 E.g. the collision behavior for a cyclic-shift
hash code shifting from 0 to 16 bits for a
list of just over 230,000 English words

 The column “Total” records the total
number of words that collide with at least
one another

 The “Max” column records the maximum
number of words colliding at any one hash
code

* shift = 0 — just sums all the characters

EEEEEEEEEEE
UNIVERSITAT
TUBINGEN

Collisions

Shift Total | Max
0 | 234735 | 623
1 | 165076 43
2| 38471 13
3 7174 5
4 1379 3
5 190 3
6 502 2
7 560 2
8 5546 4
9 393 3
10 5194 5
11 11559 5
12 822 2
13 900 4
14 2001 4
15 | 19251 8
16 | 211781 37

Hash Tables | 20

Hash Codes in Python

« The standard mechanism for computing hash codes in Python is a built-in function,
hash(x), that returns an integer value that serves as a hash code for object x

« Only immutable datatypes are hashable in Python — to ensure that the hash code of a
particular object remains constant during its lifetime

e int, float, str, tuple and frozenset all produce robust hash codes via the hash function

« Hash codes for character strings are based on a technique similar to polynomial hash
codes which uses exclusive-or computations instead of additions

- A total of only 8 string collide in the 230,000 strings example using Python’s builtin
hash function for strings

» Hashes for tuples are based on a similar technique — are based upon a combination of
the hash codes of the individual elements of the tuple

* If hash(x) is called for an instance x of a mutable type, e.g. a list, a TypeError is raised

RRRRRRRRRRRRR

CTUBINGEN Hash Tables | 21

Hash Codes in Python (cont’d)

* Instances of user-defined classes are unhashable by default — calling hash() on such
instances will lead to a TypeError if hash() is not overriden

« Cannot use user-defined classes as keys in a dict unless __hash__is defined

« A function that computes the hash code can be implemented via the _ _hash method
within the class

- The returned hash code should reflect the immutable attributes of an instance
- E.g. for a Color class that maintains three numeric red, green and blue components an
implementation might be

def __hash __(self):
return hash((self._red, self._green, self._blue)) # hash combined tuple

* Also, if a class defines equivalence through __eq__, then any implementation of __hash__
must be consistent, i.e. if x ==y, then hash(x) == hash(y)

- E.g. in Python 5 == 5.0, so hash(5) and hash(5.0) are the same

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 22

Compression Functions

» The hash code for a key k might not be immediately usable in a bucket array — the
returned integer might be negative, or might exceed the capacity of the bucket array

» The task of the compression function:

- map the hash code for a key k to the range [0, N — 1] of indices in the bucket array
« A good compression function will minimize the set of collisions for a given set of distinct
hash codes
- The division method
- The MAD method

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 23

Compression Functions: The Division Method

 Maps an integer i to i mod N, where N is the size of the bucket array and is a fixed,
positive integer

* If we choose N to be a prime number, this compression function will help “spread out” the
distribution of hashed values — ideally we would want a uniform distribution

- If N is not prime, there is a greater chance of collision due to repeating patterns

- E.g. insert keys with hash codes 200, 205, 210, 215, 220, ..., 600 into a bucket array
of size 100

« 200 mod 100 = 0, 300 mod 100 = 0, 400 mod 100 = 0, 500 mod 100 = 0, 600 mod 100 =0
« 205 mod 100 =5, 305 mod 100 = 5, 405 mod 100 = 5, 505 mod 100 =5

« 210 mod 100 =10, 310 mod 100 = 10, 410 mod 100 = 10, 510 mod 100 = 10

« 215 mod 100 = 15, ...

« 220 mod 100 = 20, ...

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 24

Compression Functions: The Division Method (cont’d)

- But if the bucket size is 101, there are no collisions
« 200 mod 101 =99, 300 mod 101 =98, 400 mod 101 =97, 500 mod 101 = 96, 600 mod 101
=95
« 205 mod 101 = 3, 305 mod 101 =2, 405 mod 101 =1, 505 mod 101 =0
« 210 mod 101 =8, 310 mod 101 =7, ...
* 215 mod 101 =13

« If a hash function is chosen well, it should ensure that the probability of two different keys
getting hashed to the same bucket is 1/N (uniform)

« Choosing N to be a prime number might not be enough — if there is a repeated pattern of
hash codes of the form pN + g for different p values, there will still be collisions

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 25

Compression Functions: The MAD Method

« The Multiply-Add-and-Divide (MAD) method maps an integer i to
[(ai + b) mod p] mod N
* Where

- N is the size of the bucket array
- p is a prime number larger than N
- a and b are integers chosen at random from the interval [0,p — 1], with a > 0

« This compression function eliminates repeated patterns in the set of hash codes, making
it less likely that two different keys will collide

RRRRRRRRRRRRR

CTUBINGEN Hash Tables | 26

Collision-Handling Schemes

UNIVERSITAT
TUBINGEN % Hash Tables | 27

Collision-Handling Schemes
« Main idea of a hash table: take a bucket array 4 and a hash function h, and use them to
implement a map by storing each item (k, v) in the bucket - A[h(k)] = v

« However, having a simple bucket array doesn’t work if there are two distinct keys k; and
k-, for which the hash function produces the same hash code, h(k;) = h(k,)

« Such collisions prevent us from being able to add item (k,, v,) once (kq, v;) was added

 Additional care needed to deal with such collisions when inserting, searching for and
deleting elements from the map

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 28

Collision Handling via Separate Chaining

« Each bucket A[j] stores its own secondary container, holding all the items (k, v) such that
h(k) = j — e.g. use a list to implement the secondary container

3 4 5 6 7 8 9 10 11 12 Hash map of size 13,
storing 10 items. Hash

function is h(k) =
k mod 13.

<t

(
(OBE

UNIVERSITAT
TUBINGEN Hash Tables | 29

Collision Handling via Separate Chaining (cont’d)
« Worst case: operations on an individual bucket take time proportional to the size of the
bucket

* For a good hash function which spreading n items uniformly in a bucket array of size N,
the expected bucket size is n/N

 Therefore, for a good hash function, the core map operations will run in O([n/N]) time
e 1 =n/N is called the load factor of the hash table

- Should be bounded by a small constant, e.g. 1

- Then the hash table operations run in O(1) expected time

RRRRRRRRRRRRR

RGNt Hash Tables | 30

Collision Handling via Open Addressing
» The separate chaining mechanism is nice and simple, however, it does require the use of
an auxiliary data structure — a list — to hold items with colliding keys

* If space is an issue (e.g. consider hand-held devices with little memory), then a set of

alternative approaches can be used, which store the colliding items directly in the original
bucket array

 Downside:

- More complex algorithms for storing, retrieving and removing items from the map

UNIVERSITAT
TUBINGEN Hash Tables | 31

Collision Handling via Open Addressing: Linear Probing

* Linear probing:

- When we try to insert an item (k, v) into a bucket A[j] that is already occupied, where
j = h(k), then we try next A[(j + 1) mod N]

- If A[(j + 1) mod N] is free, insert item at this position

- Otherwise, check if A[(j + 2) mod N] is free, and so on, until an empty bucket is found.

Must probe 4 times

New element with before finding empty slot
key = 15 to be inserted\ _A_
r M\
AV VAVE
0 1 2 3 4 5 6 7 8 9 10
13 261 5 [37]16 21

Insertion into a hash table with integer keys using linear probing, h(k) = k mod 11

UNIVERSITAT
TUBINGEN Hash Tables | 32

Collision Handling via Open Addressing: Linear Probing (cont’d)

» The linear probing collision strategy requires changes in implementation when searching
for a particular key — when implementing:
- __getitem__
- _ setitem__
- __delitem__
 Called linear probing since each access of a cell of the bucket array can be seen as a
”probe”
 For locating an item with key equal to k:

- Examine consecutive slots starting from the position given by h(k)

» Until we find the item with the key k

» Or we find an empty bucket (meaning that the item with key k was not found in the hash
table)

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 33

Collision Handling via Open Addressing: Linear Probing (cont’d)

 For deleting an item with key equal to k:

- If we were to just delete any item, then subsequent searches might fail

Delete element with key = 37,

h(37) = 37 mod 11 = 4 \/V\

Find element with key = 15,

0 1 2 3 4 5 6 7 8 9 10
13 26 | 5 |37 |16 | 15 21
h(15) = 15 mod 11 = 4 \/Y\
0 1 2 3 4 5 6 7 8 9 10
13 26 | 5 16 | 15 21

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

The search stops because an empty cell
was found — could not retrieve element with

key 15 from the map.

Hash Tables | 34

Collision Handling via Open Addressing: Linear Probing (cont’d)

 For deleting an item with key equal to k:

- Workaround: replace the deleted item with a special “available” marker object

- The search function should be updated such that it skips such positions and continues
probing until either finding the item with the given key, or an empty cell

- When setting an item, such an “available” cell is a valid location for inserting a new
item
* The use of open addressing can save space

* However, linear probing has a disadvantage, namely that it tends to cluster items of the
map into contiguous runs — and these runs might even overlap

« Such runs of items considerably slow down the hash table operations — and tend to occur
frequently if more than half of the cells of the hash table are occupied

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 35

Collision Handling via Open Addressing: Quadratic Probing

- lteratively tries the buckets A[(h(k) + f(i)) mod N] for i = 0,1,2, ... where f(i) = i2, until
finding an empty bucket

» As with linear probing, extra care must be given to implementing the delete operation

« However, this method no longer exhibits the clustering patterns of the linear probing
method

* It does create its own kind of clustering — secondary clustering — since the set of filled
cells will still have a non-uniform pattern even with evenly distributed hash codes

 If N is prime and the bucket array is less than half full, then quadratic probing is
guaranteed to find an empty slot

- The guarantee is no longer valid if the hash table becomes at least half full, or N is not
prime

RRRRRRRRRRRRR

RGNt Hash Tables | 36

Collision Handling via Open Addressing: Double Hashing

« Choose a secondary hash function, h'

* If h maps some key k to a bucket A[h(k)] that is already occupied, then iteratively try the
buckets A[(h(k) + f(i)) mod N] next, for i = 1,2,3, ... where f(i) =i - h'(k)

» The secondary hash function is not allowed to evaluate to O
« A common choice is h'(k) = q — (k mod q), for some prime number g < N

e N should also be prime

RRRRRRRRRRRRR

CTUBINGEN Hash Tables | 37

Collision Handling via Open Addressing: Using a Pseudo-Random
Number Generator

* lteratively try buckets A[(h(k) + f(i)) mod N] where f (i) is based on a pseudo-random
number generator

* The pseudo-random number generator provides a repeatable, yet somewhat arbitrary
sequence of subsequent probes that depends on the bits of the original hash code

 This approach is used by Python’s dict class

RRRRRRRRRRRRR

RGNt Hash Tables | 38

Load Factors, Rehashing and Efficiency

EBERHARD K/\RLS"
UNIVERSTTAT @ Hash Tables | 39

Load Factors

* The load factor 1 = % should ideally be kept below 1

 With separate chaining, if A gets close to 1, the probability of a collision increases — which
adds overhead to the hash table operations — since we need to resort to linear-time list

operations for the buckets that have collisions

- For hash tables with separate chaining, keeping 1<0.9 is a good rule of thumb

 With open addressing, when 4 > 0.5 the clusters of entries in the bucket array start
growing — due to the probing strategies searching might “bounce around” considerably
before finding the element with a particular key for insertion, replacement or deletion

- For hash tables with linear probing, A < 0.5 is a good default

- For hash tables with quadratic probing, double hashing or pseudo-random numbers, 1
< 2/3 is a good option — e.g. this is what Python’s dict implementation uses

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 40

Rehashing

« If an insertion causes the load factor to go above the optimum threshold for each case -
rehashing:

- Resize the underlying table (to regain a load factor under the optimum threshold)

- Reinsert all objects into the new table

- The hash code doesn’t need to be recomputed, however, a new compression needs to
be applied, which takes into account the size of the new underlying array

- reshashing will generally scatter the items through the new bucket array

- Typically, the new array is at least double the size of the previous one

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 41

Hash Table Efficiency

« If the hash function is good, the entries are expected to be uniformly distributed in the N
cells of the bucket array

* To store n entries, the expected number of keys in a bucket is O[n/N] - which is 0(1) if n
is O(N)

» There are also costs for periodic rehashing — the table might need to be resized after a
number of insertions and deletions - 0(1)* - amortized cost for __setitem and
__delitem__

» Worst case — map every item to the same bucket
- Linear time performance when inserting one item for a hash table using separate
chaining

- Linear time performance when inserting one item when using any open addressing
model where the secondary sequence of probes depends only on the hash code

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 42

Hash Table Efficiency (cont’d)

Operation | List Hash Table
expected | worst case
__getitem__ | O(n) | O(1) O(n)
__setitem __ | O(n) O(1) O(n)
__delitem__ | O(n) | O(1) O(n)
__len__ o(l) | 0O(1) O(1)
__iter__ O(n) O(n) O(n)

Hash Tables | 43

Hash Tables — In Practice

« Hash tables are among the most efficient means for implementing a map

« Every programming language comes with efficient map implementations — Python’s dict,
Java’'s HashMap

* The hash table worst-case performance can serve as a means for a denial-of-service
(DoS) attack

- If the hash implementation is public, then an attacker could precompute a very large
number of moderate-length strings that all hash to an identical 32-bit hash code

- This makes all these hash codes collide with any of the discussed schemes — other
than double hashing

- With every insertion the system becomes slower, since more and more “hops” have to
be made before a place for insertion is found

RRRRRRRRRRRRR »
UNIVERSITAT Hash Tables | 44

TUBINGEN

Hash Tables — In Practice (cont’d)

* In late 2011, such an attack was demonstrated by a team a researchers

A typical web server will allow a series of key-value pairs to be embedded in the URL,
using a syntax like ?key1=val1&key2=val2&key3=val3

« Such keys are usually stored directly in a map by a server, and the length and number of
such parameters are limited with the presumption that the storage time in the map will be
linear in term of the number of entries

« If all keys collide, storing the pairs takes quadratic time — causing the server to perform an
inordinate amount of work

* In spring 2012, a security patch was distributed by the Python developers, introducing
randomization into the computation of hash codes for strings — making it more difficult to
reverse engineer a set of colliding strings

https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments
/2007 28C3 Effective DoS on web application platforms.pdf

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN Hash Tables | 45

https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf

Hash Table Implementation

UNIVERSITAT
TUBINGEN % Hash Tables | 46

HashMapBase

class HashMapBase(MapBase):
""" Abstract base class for map using hash-table with MAD compression.”""
def __init__(self, cap=11, p=109345121):
""" Create an empty hash-table map."""
self._table = cap * [None |
self._.n=0 # number of entries in the map
self._prime = p # prime for MAD compression
self._scale = 1 + randrange(p—1) # scale from 1 to p-1 for MAD 22 def __setitem__(self, k, v):
self._shift = randrange(p) # shift from 0 to p-1 for MAD 3 i =“Se|f._has_|;_func'tic;n(k.)
24 self._bucket_setitem(j, k, v) # subroutine maintains self._n
def _hash_function(self, k): 25 if self._n > len(self _table) // 2: # keep load factor <= 0.5
return (hash(k)+self._scale + self._shift) % self._prime % len(self._table) | 26 self._resize(2 * len(self._table) — 1) # number 2"x - 1 is often prime
27
def __len__(self): 28 def __delitem__(self, k):
return self._n 29 j = self._hash_function(k)
30 self._bucket_delitem(j, k) # may raise KeyError
def __getitem__(self, k): 31 selff._.n —=1
j = self._hash_function(k) 32
return self._bucket_getitem(j, k) # may raise KeyError 33 def _resize(self, c): 7 resize bucket array to capacity c
34 old = list(self.items()) # use iteration to record existing items
35 self._table = ¢ * [None] # then reset table to desired capacity
36 selff._.n=0 # n recomputed during subsequent adds
37 for (k,v) in old:
38 self[k] = v # reinsert old key-value pair
UNIVERSITAT @

TUBINGEN Hash Tables | 47

HashMapBase

« The bucket array is represented as a Python list, self._table

- All entries are initialized to None
e self._n stores the number of distinct elements currently stored in the table

- If the load factor grows above 0.5 — rehash

e hash_function is an utility for creating hashes based on Python’s hash implementation
and using a Multiply-Add-and-Divide (MAD) scheme

e HashMapBase does not define the way that the basic operations are performed

- _bucket_getitem(j,k): search for item with key k, return it if found (or raise KeyError)

- _bucket_setitem(j,k,v): modify bucket j by associating the key k with value v; must
increment self._n

- _bucket_delitem(j,k): remove item with key k from bucket j; decrement self._n after
- __iter__: iterate though all the keys in the map

RRRRRRRRRRRRR

CTUBINGEN Hash Tables | 48

ChainHashMap

1 class ChainHashMap(HashMapBase):

2 """Hash map implemented with separate chaining for collision resolution.”""

3

4 def _bucket_getitem(self, j, k):

5 bucket = self._table][j]

6 if bucket is None:

7 raise KeyError('Key Error: ' + repr(k)) # no match found

8 return bucket[k] # may raise KeyError

9

10 def _bucket_setitem(self, j, k, v):

11 if self._table[j] is None:

12 self._table[j] = UnsortedTableMap() # bucket is new to the table

13 oldsize = len(self._table[j]) 18 def _bucket_delitem(se!f, i, k):

14 SG'f.-tab'eU][k] —v 19 Pucket =.SE|f._tab|e[j]

15 if len(self._table[j]) > oldsize: # key was new to the table | 20 if bucket is None:

16 self_n +=1 4 increase overall map size 21 raise KeyError('Key Error: ' + repr(k)) # no match found

17 22 del bucket[k] # may raise KeyError
23
24 def __iter__(self):
25 for bucket in self._table:
26 if bucket is not None: # a nonempty slot
27 for key in bucket:
28 yield key

UNIVERSITAT Hash Tables | 49

TUBINGEN

—_— 0 O 0 NN B W ==

Yt
D

13

p—
N =

O 0 N D

o
W N = O

[SO I SO T S T 5O B (S]
=

n

ProbeHashMap

class ProbeHashMap(HashMapBase):
"""Hash map implemented with linear probing for collision resolution.
_AVAIL = object() # sentinal marks locations of previous deletions

def _is_available(self, j):
""" Return True if index j is available in table.

return self._table[j] is None or self._table[j] is ProbeHashMap._AVAIL

mnn

def _find_slot(self, j, k):
"""Search for key k in bucket at index j.

Return (success, index) tuple, described as follows:
If match was found, success is True and index denotes its location.

If no match found, success is False and index denotes first available slot.

nnn

firstAvail = None
while True:
if self._is_available(j):
if firstAvail is None:
firstAvail = j
if self._table[j] is None:
return (False, firstAvail)
elif k == self._table[j]._key:
return (True, j)
J= (0 + 1) % len(self._table)

search has failed

found a match

mark this as first avail

keep looking (cyclically)

e - BNV N SS R UL G R VL R VS I UL VS I UL I SO T N I SO T (8
o — OO0 0 IO s Wi — O 0 Jd

43
e
45
46
47
48
49

def _bucket_getitem(self, j, k):
found, s = self._find_slot(j, k)
if not found:
raise KeyError('Key Error: ' + repr(k))
return self._table[s]._value

def _bucket_setitem(self, j, k, v):
found, s = self._find_slot(j, k)
if not found:
self._table[s] = self._Iltem(k,v)
self._.n +=1

else:
self._table[s]._value = v

def _bucket_delitem(self, j, k):
found, s = self._find_slot(j, k)
if not found:
raise KeyError('Key Error: ' + repr(k))
self._table[s] = ProbeHashMap._AVAIL

def __iter__(self):
for j in range(len(self._table)):
if not self._is_available(j):
yield self._table[j].-key

no match found

insert new item
size has increased

overwrite existing

no match found
mark as vacated

scan entire table

EBERHARD KARLS am
UNIVERSITAT ¢
TUBINGEN 2

Hash Tables | 50

Thank you.

EBERHARD KARLS
UNIVERSITAT
TUBINGEN

