
Corina Dima
corina.dima@uni-tuebingen.de

Department of General and Computational Linguistics

Data Structures and Algorithms for CL III, WS 2019-2020

Hash Tables

Hash Tables | 2

Data Structures & Algorithms in Python
MICHAEL GOODRICH
ROBERTO TAMASSIA

MICHAEL GOLDWASSER

10.1 Maps and Dictionaries
v The Map ADT

10.2 Hash Tables
v Hash Functions
v Collision-Handling Schemes
v Load Factors, Rehashing and

Efficiency
v Hash Table Implementations

Maps

• map abstraction: unique keys are mapped to associated values

• maps are also known as associative arrays or dictionaries

• Python’s dict class is an implementation of the map ADT

• The keys are assumed to be unique, but the values are not necessarily unique

• An array-like syntax is used

- To obtain the value associated with a key: currency[‘Spain’]
- To remap the key to a new value: currency[‘Greece’] = ‘drachma’

• However, unlike in an array, indices don’t have to be consecutive – and not even numeric
Hash Tables | 3

Rupee

Turkey Spain China United States IndiaGreece

Lira Euro Yuan Dollar

Map of countries (keys)
associated with their
currency (values)

The Map ADT (1) – Core Functionality

M[k] Return the value v associated with the key k in map M, if one exists;
otherwise raise a KeyError; in Python, implemented with the __getitem__
method.

M[k] = v Associate value v with key k in map M, replacing the existing value if the map
already contains an item with key equal to k. In Python, implemented using
the __setitem__ method.

del M[k] Remove from map M the item with key equal to k; if M has no such item,
raise a KeyError. In Python implemented with the __delitem__ method.

len(M) Return the number of items in map M. In Python, implemented with the
__len__ method.

iter(M) The default iteration for a map generates a sequence of keys in the map. In
Python, implemented with the __iter__ method
– allows loops of the form: for k in M

Hash Tables | 4

The Map ADT (2)

Hash Tables | 5

k in M Return True if the map contains an item with key k. In Python, implemented with the
__contains__ method.

M.get(k, d=None) Return M[k] if key k exists in the map; otherwise return default value d. This provides a
way to query M[k] without the risk of a KeyError.

M.setdefault(k, d) If key k exists in the map, return M[k]. If k does not exist, set M[k] = d and return that
value.

M.pop(k, d=None) Remove the item associated with key k from the map and return its associated value v.
If key is not in the map, return default value d (or raise KeyError if d is None).

M.popitem() Remove an arbitrary key-value pair from the map, and return a (k,v) tuple representing
the removed pair. Raise KeyError if M is empty.

M.clear() Remove all key-value pairs from the map.

M.keys() Return a set-like view of all keys in M.
M.values() Return a set-like view of all values in M.
M.items() Return a set-like view of (k,v) tuples for all entries in M.
M.update(M2) Assign M[k] = v for every (k,v) pair in M2.

MapBase

Hash Tables | 6

Python’s MutableMapping Abstract Base Class

• Python’s collections module provides two abstract base classes for working with maps:
Mapping and MutableMapping

• The Mapping class contains the nonmutating behaviors supported by Python’s dict class
• The MutableMapping class extends the Mapping class to include mutating behaviours
• These are abstract base classes (ABCs) – they contain methods that are declared to be

abstract
• Such methods must be implemented by concrete subclasses
• However, the ABC provides concrete implementations that depend on the use of the

abstract implementations
- E.g. MutableMapping provides implementations for all the operations on the slide 5
- But it depends on the concrete subclass to provide implementations for the core

functionality (listed on slide 4)
- the behaviors on s. 5 can be inherited by declaring MutableMapping as a parent class

Hash Tables | 7

Unsorted Map Implementation

Hash Tables | 8

Hash Tables

Hash Tables | 9

Warmup: Lookup Tables

• a map M supports the abstraction of using keys as indices using the M[k] syntax

• Consider a restricted setting in which a map with ! items uses keys that are known to be
integers from 0 to # − 1, with # ≥ !.

• We could then represent the map using what is known as a lookup table of size #

• However, the lookup table is not very practical

- If # ≫ !, the map representation uses too much space
- The keys of the map must be integers

Hash Tables | 10

0 1 2 3 4 5 6 7 8 9 10

D Z C Q

Lookup table with length 11 for a map containing the items (1,D), (3,Z), (6,C), (7,Q)

Hash Tables

• Instead of requiring the keys to be integers, use a hash function to map any key to a
range 0 to " − 1

• Ideally, the indices (keys) obtained via a hash function should be well (uniformly)
distributed over the 0 to " − 1 range, but in practice there might be distinct keys that get
mapped to the same index

• Conceptualize the hash table as a bucket array – each bucket may manage a collection
of items that are assigned the same index by the hash function

Hash Tables | 11

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

Hash Functions

• The goal of a hash function ℎ is to map each key " to an integer in the range 0, % − 1 ,
where % is the capacity of the bucket array for the hash table

• Instead of using directly the key " as an index in the array, which might not be
appropriate, use the hash function value, ℎ("), as the index

- E.g. for the bucket array *, the item (", +) will be stored in the bucket *[ℎ(")]
• If two or more keys have the same hash value, then two different items will be mapped to

the same bucket in * – this is called a hash collision

• There are multiple strategies for dealing with hash collisions: separate chaining, open
addressing

• A hash function is good if:

- It maps the keys in the map as to sufficiently minimize collisions
- It is fast and easy to compute

Hash Tables | 12

Hash Functions (cont’d)

• A hash function, ℎ(#) typically consists of two
parts:

1. A hash code that maps a key # to an
integer

2. A compression function that maps the
hash code to an integer within a range of
integers, [0, (− 1] for a bucket array

• Separating the two parts makes it possible to
compute the hash code independently of the
specific hash table size

• Only the compression function depends on the
size of the hash table – important, especially
since the underlying array can be resized

Hash Tables | 13

-1

hash code

1 20-2.

compression function

1 20 N-1. . .

Arbitrary Objects

Hash Codes

• The hash code for an arbitrary key ! is
- an integer
- doesn’t have to be in the range 0, $ − 1
- may even be negative

• The set of hash codes assigned to the keys should avoid collisions as much as possible

• If the hash codes already generate collisions, there is no way for them to be avoided in
the compression step

• (some) possible types of hash codes:

- Bit representations
- Polynomial hash codes
- Cyclic-shift hash codes

Hash Tables | 14

Bit Representation as a Hash Code

• For any data type !, we can take as a hash code for ! an integer interpretation of its bits

- E.g. hash code for 803 could be 803
- E.g. hash code for 3.14 could be based upon an interpretation of the bits of the

floating-point representation as an integer
• Not applicable for types where the representation is longer than the desired hash code

size

- E.g. transform a 64-bit key to a 32-bit hash code
- Solution 1: discard a part of the representation (rely only on the high-order or low-order

bits) – might lead to many keys colliding, since part of the information is discarded
- Solution 2: combine all the bits from the original representation into a representation –

e.g. add the two 32-bit representations, ignoring overflow, or do an exclusive-or
∑#$%&'()# or)%⨁)(⨁x,⨁…⨁)&'(,⨁ is exclusive-or (XOR) (^ in Python)

Hash Tables | 15

Polynomial Hash Codes

• For character strings or other variable-length objects that can be seen as tuples of the
form ("#, "%, … , "'(%), where the order of the "*’s is significant, summation or exclusive-or
hash codes are not a good solution

• E.g. a 16-bit hash code for a character string + that sums the Unicode values of the
characters in + will produce collisions for common groups of strings: stop, tops, pots and
spot will all have the same hash code

• A better solution is to take into consideration the positions of each "*:
"#,'(% + "%,'(. + …+ "'(., + "'(%, for , ≠ 0, , ≠ 1

• This is a polynomial in , that takes the components ("#, "%, … , "'(%) of an object " as its
coefficients

• can be computed in linear time using Horner’s rule

"'(% + ,("'(. + , "'(2 + …+ , ". + , "% + , "# …)

Hash Tables | 16

Polynomial Hash Codes (cont’d)

• When computing the polynomial, overflows can occur – they are typically ignored

• The choice of ! has an influence over the ability of the hash code to preserve some of the
information content even in overflow cases

• Experimental studies suggest that 33, 37, 39 and 41 are good choices for ! when working
with character strings that are English words

- E.g. when using 33, 37, 39 and 41 less then 7 collisions were produced (in each case)
for the hash codes of words form a 50,000 word list

Hash Tables | 17

Cyclic-Shift Hash Codes

• Variant of the polynomial hash code

• Replaces multiplication by ! by a cyclic shift of a partial sum by a certain number of bits

• E.g. a 5-bit cyclic shift of the 32-bit value

00111101100101101010100010101000

is

10110010110101010001010100000111

• The cyclic-shift operation has little in terms of meaning - but accomplishes the goal of
varying the bits of the hash code

• In Python a cycling-shift of bits can be obtained using the bitwise operators ≪ and ≫ - the
results must also be truncated to 32 or 64 bits.

Hash Tables | 18

Cyclic-Shift Hash Codes – Python implementation

Hash Tables | 19

Cyclic-Shift Hash Codes (cont’d)

• As with the polynomial hash codes,
choosing the amount by which each code
should be shifted must be fine-tuned

• E.g. the collision behavior for a cyclic-shift
hash code shifting from 0 to 16 bits for a
list of just over 230,000 English words

• The column “Total” records the total
number of words that collide with at least
one another

• The “Max” column records the maximum
number of words colliding at any one hash
code

• shift = 0 – just sums all the characters

Hash Tables | 20

Hash Codes in Python

• The standard mechanism for computing hash codes in Python is a built-in function,
hash(x), that returns an integer value that serves as a hash code for object x

• Only immutable datatypes are hashable in Python – to ensure that the hash code of a
particular object remains constant during its lifetime

• int, float, str, tuple and frozenset all produce robust hash codes via the hash function

• Hash codes for character strings are based on a technique similar to polynomial hash
codes which uses exclusive-or computations instead of additions

- A total of only 8 string collide in the 230,000 strings example using Python’s builtin
hash function for strings

• Hashes for tuples are based on a similar technique – are based upon a combination of
the hash codes of the individual elements of the tuple

• If hash(x) is called for an instance x of a mutable type, e.g. a list, a TypeError is raised

Hash Tables | 21

Hash Codes in Python (cont’d)

• Instances of user-defined classes are unhashable by default – calling hash() on such
instances will lead to a TypeError if hash() is not overriden

• Cannot use user-defined classes as keys in a dict unless __hash__ is defined
• A function that computes the hash code can be implemented via the __hash__ method

within the class
- The returned hash code should reflect the immutable attributes of an instance
- E.g. for a Color class that maintains three numeric red, green and blue components an

implementation might be

• Also, if a class defines equivalence through __eq__, then any implementation of __hash__
must be consistent, i.e. if x == y, then hash(x) == hash(y)

- E.g. in Python 5 == 5.0, so hash(5) and hash(5.0) are the same
Hash Tables | 22

Compression Functions

• The hash code for a key ! might not be immediately usable in a bucket array – the
returned integer might be negative, or might exceed the capacity of the bucket array

• The task of the compression function:

- map the hash code for a key ! to the range [0, % − 1] of indices in the bucket array
• A good compression function will minimize the set of collisions for a given set of distinct

hash codes

- The division method
- The MAD method

Hash Tables | 23

Compression Functions: The Division Method

• Maps an integer ! to ! mod %, where % is the size of the bucket array and is a fixed,
positive integer

• If we choose % to be a prime number, this compression function will help “spread out” the
distribution of hashed values – ideally we would want a uniform distribution

- If N is not prime, there is a greater chance of collision due to repeating patterns
- E.g. insert keys with hash codes 200, 205, 210, 215, 220, …, 600 into a bucket array

of size 100
• 200 mod 100 = 0, 300 mod 100 = 0, 400 mod 100 = 0, 500 mod 100 = 0, 600 mod 100 = 0
• 205 mod 100 = 5, 305 mod 100 = 5, 405 mod 100 = 5, 505 mod 100 = 5
• 210 mod 100 = 10, 310 mod 100 = 10, 410 mod 100 = 10, 510 mod 100 = 10
• 215 mod 100 = 15, …
• 220 mod 100 = 20, …

Hash Tables | 24

Compression Functions: The Division Method (cont’d)

- But if the bucket size is 101, there are no collisions
• 200 mod 101 = 99, 300 mod 101 = 98, 400 mod 101 = 97, 500 mod 101 = 96, 600 mod 101

= 95
• 205 mod 101 = 3, 305 mod 101 = 2, 405 mod 101 = 1, 505 mod 101 = 0
• 210 mod 101 = 8, 310 mod 101 = 7, …
• 215 mod 101 = 13

• If a hash function is chosen well, it should ensure that the probability of two different keys
getting hashed to the same bucket is 1/# (uniform)

• Choosing # to be a prime number might not be enough – if there is a repeated pattern of
hash codes of the form $# + & for different $ values, there will still be collisions

Hash Tables | 25

Compression Functions: The MAD Method

• The Multiply-Add-and-Divide (MAD) method maps an integer ! to

"! + $ mod (mod)
• Where

-) is the size of the bucket array
- (is a prime number larger than)
- " and $ are integers chosen at random from the interval 0, (− 1 , with " > 0

• This compression function eliminates repeated patterns in the set of hash codes, making
it less likely that two different keys will collide

Hash Tables | 26

Collision-Handling Schemes

Hash Tables | 27

Collision-Handling Schemes

• Main idea of a hash table: take a bucket array ! and a hash function ℎ, and use them to
implement a map by storing each item ($, &) in the bucket - ! ℎ $ = &

• However, having a simple bucket array doesn’t work if there are two distinct keys $) and
$* for which the hash function produces the same hash code, ℎ $) = ℎ($*)

• Such collisions prevent us from being able to add item ($*, &*) once ($), &)) was added

• Additional care needed to deal with such collisions when inserting, searching for and
deleting elements from the map

Hash Tables | 28

Collision Handling via Separate Chaining

• Each bucket ![#] stores its own secondary container, holding all the items (&, () such that
ℎ & = # – e.g. use a list to implement the secondary container

Hash Tables | 29

A

1 2 3 4 5 6 7 8 9 100 11 12

12

38

25

90

54

28

41

36

18 10

Hash map of size 13,
storing 10 items. Hash
function is ℎ & =
& mod 13.

Collision Handling via Separate Chaining (cont’d)

• Worst case: operations on an individual bucket take time proportional to the size of the
bucket

• For a good hash function which spreading ! items uniformly in a bucket array of size ",
the expected bucket size is !/"

• Therefore, for a good hash function, the core map operations will run in $(!/") time

• ' = !/" is called the load factor of the hash table

- Should be bounded by a small constant, e.g. 1
- Then the hash table operations run in $(1) expected time

Hash Tables | 30

Collision Handling via Open Addressing

• The separate chaining mechanism is nice and simple, however, it does require the use of
an auxiliary data structure – a list – to hold items with colliding keys

• If space is an issue (e.g. consider hand-held devices with little memory), then a set of
alternative approaches can be used, which store the colliding items directly in the original
bucket array

• Downside:

- More complex algorithms for storing, retrieving and removing items from the map

Hash Tables | 31

Collision Handling via Open Addressing: Linear Probing

• Linear probing:

- When we try to insert an item (", $) into a bucket &[(] that is already occupied, where
(= ℎ("), then we try next &[(+ 1 ./0 1]

- If &[(+ 1 ./0 1] is free, insert item at this position
- Otherwise, check if &[(+ 2 ./0 1] is free, and so on, until an empty bucket is found.

Hash Tables | 32

26

1 2 3 4 5 6 7 8 9 100

New element with
key = 15 to be inserted

Must probe 4 times
before finding empty slot

5 37 16 2113

Insertion into a hash table with integer keys using linear probing, ℎ " = " ./0 11

Collision Handling via Open Addressing: Linear Probing (cont’d)

• The linear probing collision strategy requires changes in implementation when searching
for a particular key – when implementing:

- __getitem__
- __setitem__
- __delitem__

• Called linear probing since each access of a cell of the bucket array can be seen as a
”probe”

• For locating an item with key equal to !:
- Examine consecutive slots starting from the position given by ℎ(!)

• Until we find the item with the key !
• Or we find an empty bucket (meaning that the item with key ! was not found in the hash

table)

Hash Tables | 33

Collision Handling via Open Addressing: Linear Probing (cont’d)

• For deleting an item with key equal to !:
- If we were to just delete any item, then subsequent searches might fail

Hash Tables | 34

13 26 5 37 16 15 21

0 1 2 3 4 5 6 7 8 9 10

Delete element with key = 37,
h(37) = 37 mod 11 = 4

13 26 5 16 15 21

0 1 2 3 4 5 6 7 8 9 10

Find element with key = 15,
h(15) = 15 mod 11 = 4

The search stops because an empty cell
was found – could not retrieve element with
key 15 from the map.

Collision Handling via Open Addressing: Linear Probing (cont’d)

• For deleting an item with key equal to !:
- Workaround: replace the deleted item with a special “available” marker object
- The search function should be updated such that it skips such positions and continues

probing until either finding the item with the given key, or an empty cell
- When setting an item, such an “available” cell is a valid location for inserting a new

item
• The use of open addressing can save space

• However, linear probing has a disadvantage, namely that it tends to cluster items of the
map into contiguous runs – and these runs might even overlap

• Such runs of items considerably slow down the hash table operations – and tend to occur
frequently if more than half of the cells of the hash table are occupied

Hash Tables | 35

Collision Handling via Open Addressing: Quadratic Probing

• Iteratively tries the buckets ![ℎ $ + & ' ()* +] for ' = 0,1,2, … where & ' = '3, until
finding an empty bucket

• As with linear probing, extra care must be given to implementing the delete operation

• However, this method no longer exhibits the clustering patterns of the linear probing
method

• It does create its own kind of clustering – secondary clustering – since the set of filled
cells will still have a non-uniform pattern even with evenly distributed hash codes

• If + is prime and the bucket array is less than half full, then quadratic probing is
guaranteed to find an empty slot

- The guarantee is no longer valid if the hash table becomes at least half full, or + is not
prime

Hash Tables | 36

Collision Handling via Open Addressing: Double Hashing

• Choose a secondary hash function, ℎ"

• If ℎ maps some key # to a bucket $[ℎ #] that is already occupied, then iteratively try the
buckets $[ℎ # + () *+, -] next, for) = 1,2,3, … where () =) 4 ℎ′(#)

• The secondary hash function is not allowed to evaluate to 0

• A common choice is ℎ" # = 8 − (# *+, 8), for some prime number 8 < -
• - should also be prime

Hash Tables | 37

Collision Handling via Open Addressing: Using a Pseudo-Random
Number Generator

• Iteratively try buckets ![ℎ $ + & ' ()* +] where &(') is based on a pseudo-random
number generator

• The pseudo-random number generator provides a repeatable, yet somewhat arbitrary
sequence of subsequent probes that depends on the bits of the original hash code

• This approach is used by Python’s dict class

Hash Tables | 38

Load Factors, Rehashing and Efficiency

Hash Tables | 39

Load Factors

• The load factor ! = #
$, should ideally be kept below 1

• With separate chaining, if ! gets close to 1, the probability of a collision increases – which
adds overhead to the hash table operations – since we need to resort to linear-time list
operations for the buckets that have collisions

- For hash tables with separate chaining, keeping !<0.9 is a good rule of thumb

• With open addressing, when ! > 0.5 the clusters of entries in the bucket array start
growing – due to the probing strategies searching might “bounce around” considerably
before finding the element with a particular key for insertion, replacement or deletion

- For hash tables with linear probing, ! < 0.5 is a good default

- For hash tables with quadratic probing, double hashing or pseudo-random numbers, !
< 2/3 is a good option – e.g. this is what Python’s dict implementation uses

Hash Tables | 40

Rehashing

• If an insertion causes the load factor to go above the optimum threshold for each case -
rehashing:

- Resize the underlying table (to regain a load factor under the optimum threshold)
- Reinsert all objects into the new table
- The hash code doesn’t need to be recomputed, however, a new compression needs to

be applied, which takes into account the size of the new underlying array
- reshashing will generally scatter the items through the new bucket array
- Typically, the new array is at least double the size of the previous one

Hash Tables | 41

Hash Table Efficiency

• If the hash function is good, the entries are expected to be uniformly distributed in the !
cells of the bucket array

• To store " entries, the expected number of keys in a bucket is # "/! - which is #(1) if "
is #(!)

• There are also costs for periodic rehashing – the table might need to be resized after a
number of insertions and deletions - # 1 ∗ - amortized cost for __setitem__ and
__delitem__

• Worst case – map every item to the same bucket

- Linear time performance when inserting one item for a hash table using separate
chaining

- Linear time performance when inserting one item when using any open addressing
model where the secondary sequence of probes depends only on the hash code

Hash Tables | 42

Hash Table Efficiency (cont’d)

Hash Tables | 43

Hash Tables – In Practice

• Hash tables are among the most efficient means for implementing a map

• Every programming language comes with efficient map implementations – Python’s dict,
Java’s HashMap

• The hash table worst-case performance can serve as a means for a denial-of-service
(DoS) attack

- If the hash implementation is public, then an attacker could precompute a very large
number of moderate-length strings that all hash to an identical 32-bit hash code

- This makes all these hash codes collide with any of the discussed schemes – other
than double hashing

- With every insertion the system becomes slower, since more and more “hops” have to
be made before a place for insertion is found

Hash Tables | 44

Hash Tables – In Practice (cont’d)

• In late 2011, such an attack was demonstrated by a team a researchers

• A typical web server will allow a series of key-value pairs to be embedded in the URL,
using a syntax like ?key1=val1&key2=val2&key3=val3

• Such keys are usually stored directly in a map by a server, and the length and number of
such parameters are limited with the presumption that the storage time in the map will be
linear in term of the number of entries

• If all keys collide, storing the pairs takes quadratic time – causing the server to perform an
inordinate amount of work

• In spring 2012, a security patch was distributed by the Python developers, introducing
randomization into the computation of hash codes for strings – making it more difficult to
reverse engineer a set of colliding strings

Hash Tables | 45

https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments
/2007_28C3_Effective_DoS_on_web_application_platforms.pdf

https://fahrplan.events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf

Hash Table Implementation

Hash Tables | 46

HashMapBase

Hash Tables | 47

HashMapBase

• The bucket array is represented as a Python list, self._table

- All entries are initialized to None
• self._n stores the number of distinct elements currently stored in the table

• If the load factor grows above 0.5 – rehash

• _hash_function is an utility for creating hashes based on Python’s hash implementation
and using a Multiply-Add-and-Divide (MAD) scheme

• HashMapBase does not define the way that the basic operations are performed

- _bucket_getitem(j,k): search for item with key k, return it if found (or raise KeyError)
- _bucket_setitem(j,k,v): modify bucket j by associating the key k with value v; must

increment self._n
- _bucket_delitem(j,k): remove item with key k from bucket j; decrement self._n after
- __iter__: iterate though all the keys in the map

Hash Tables | 48

ChainHashMap

Hash Tables | 49

ProbeHashMap

Hash Tables | 50

Thank you.

