EBERHARD KARLS FACULTY OF
UNIVERSITAT HUMANITIES
TUBINGE N Department of General and Computational Linguistics

Shortest Paths

- 0000000000000
Data Structures and Algorithms for CL lll, WS 2019-2020

Corina Dima
corina.dima@uni-tuebingen.de



MICHAEL GOODRICH

Data Structures & Algorithms in Python ROBERTO TAMASSTA
MICHAEL GOLDWASSER

Data Struct
&aA?gorli‘tulfmusres 14.6 Shortest Paths

in Python

MicHaeL T. GoobricH ® RogerTo Tamassia @ MicHaeL H. GoLbwasser

EBERHARD KARLS &
UNIVERSITAT &
TUBINGEN &

Shortest Paths | 2



Level O

Shortest Paths / \;

« ABFS traversal can be used to find the
shortest path from some starting vertex to
every other vertex in a connected graph

- E.g. shortest path from vertex D to to E
Is 3 edges

« If any edge is as good as other — this
approach works @

S~ -

Level 2

Level 1
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Shortest Paths (cont’d)

e But there are also cases when some
edges might be preferred to others

o * E.g. two flights going from New York (JFK)
\’ 2 — /) to Los Angeles (LAX)

__~+ One visits Chicago (ORD) and Dallas
(DFW) in between

* the other only visits Miami (MIA) in
between

 First path: 740 + 802 + 1235 = 2777 miles
« Second path: 1090 + 2342 = 3432 miles

 The first path is the minimum weight path
in the graph from JFK to LAX

RRRRRRRRRRRRR
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Weighted Graphs

« A weighted graph is a graph that has a numeric (integer,
float) label w(e) associated with each edge e, called the
weight (or cost) of the edge

* For e = (u, v) we use the notation w(u, v) = w(e)
* The length (or weight) of a path P is the sum of the
weights on the edges of P

o If P = ((vg,v1), (W1, v3), ..., W_1, i), then the length of
P, w(P) is

k-1
w(P) = > w(wi, Vi)
=0

* The distance from a vertex u to a vertex v in G, d(u, v),
is the length of a minimum-length path (shortest path)
from u to v, if such a path exists

- The distance from JFK to LAX is 2777 miles

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

Shortest Paths | 5



Weighted Graphs (cont’d)

« By convention, d(u, v) = oo if there is no path from u to v
in the graph

« If there is a negative-weight cycle in the graph, then
d(u, v) might not be defined

- If someone is paying us to fly from New York (JFK) to f
Chicago (ORD), then the weight of the path is -740

- If they also pay us to go back to ORD, then we have a
negative cycle, where each pass through the cycle
modifies the length of any other path by -1480

- Any path in this graph could always be made
“‘cheaper” by going through the negative cycle (an
infinite number of times)

« So when modelling shortest paths we should be careful
not to introduce negative weight cycles

UNIVERSITAT
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Shortest Path Problem

« Given a weighted digraph G, find the shortest path from some vertex s to each other
vertex of G, viewing the weights on the edges as distances

* Also called the single-source shortest path problem
» Explore several algorithms for finding the shortest path, that make different assumptions

. All edge weights are non-negative (but there might be cycles)
. The digraph doesn’t have cycles (but there might be negative edges)
lIl.  The digraph can have both cycles and negative weights, but no negative cycles

RRRRRRRRRRRRR
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Dijkstra’s Algorithm

What is the shortest way to travel from Rotterdam to Groningen, in general: from given
city to given city. It is the algorithm for the shortest path, which | designed in about twenty
minutes. One morning | was shopping in Amsterdam with my young fiancée, and tired, we
sat down on the café terrace to drink a cup of coffee and | was just thinking about
whether | could do this, and | then designed the algorithm for the shortest path. As | said,
it was a twenty-minute invention. In fact, it was published in ’59, three years later. The
publication is still readable, it is, in fact, quite nice. One of the reasons that it is so nice
was that | designed it without pencil and paper. | learned later that one of the advantages
of designing without pencil and paper is that you are almost forced to avoid all avoidable
complexities. Eventually that algorithm became, to my great amazement, one of the
cornerstones of my fame.

— Edsger Dijkstra, in an interview with Philip L. Frana, Communications of the ACM,
20015

https://www-m3.ma.tum.de/foswiki/pub/MN0506/\WWebHome/dijkstra.pdf

Born

Died

Edsger Wybe Dijkstra

" Dijkstra in 2002

11 May 1930
Rotterdam, Netherlands

6 August 2002 (aged 72)
Nuenen, Netherlands

Alma mater Leiden University

Awards

Fields

(B.S., M.S.)
University of Amsterdam
(Ph.D.)

SIGCSE Outstanding
Contribution (1989)
Turing Award (1972)
ACM Fellow (1994)
Dijkstra Prize (2002)

Scientific career

Computing science
Theoretical computer science
Systems science
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Dijkstra’s Algorithm

» Use a greedy method to solve the shortest path problem Edsger Wybe Dijkstra
« Intuitively, perform a “weighted” BFS from a start vertex s A

- The weights on the edges incident to s provide the means to
decide which edge should be followed next

» The algorithm iteratively grows a “cloud” of vertices starting at s
- The vertices join the “cloud” in the order of their distance from s

- At each iteration, the next vertex to be chosen is the vertex thatis |, . roen=e

Rotterdam, Netherlands

closestto s = g

- The algorithm terminates when there are no more vertices to be Alma mater ®oiden onmersiy
added to the “cloud”, or when the remaining vertices are not mor
connected to the vertices in the “cloud” - SC:O<(939>)

- At this point we have a shortest path from s to each vertex of that s|"(<9§:)>
graph G that is reachable from s N

Systems science

Shortest Paths | 9




Dijkstra’s Algorithm - Pseudocode

Algorithm ShortestPath(G, s):

Input: A weighted graph G with nonnegative edge weights, and a distinguished
vertex s of G.
Output: The length of a shortest path from s to v for each vertex v of G.

Initialize D[s] = 0 and D[v] = oo for each vertex v # s.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u = value returned by Q.remove_min()
for each vertex v adjacent to u such that visin Q do
{perform the relaxation procedure on edge (u,v)}
if D[u] +w(u,v) < D[v] then
D[|v| = D[u] +w(u,v)
Change to D[v] the key of vertex v in Q.
return the label D[v| of each vertex v

RRRRRRRRRRRRR
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Edge Relaxation

e D[v] approximates the distance from s to each vertex v in the graph G

e D[v] will always store the length of the best path found so far from s to v
e Initially, D[s] = 0 and D[v] = o for every v of G other than s

e C is the set of “cloud” vertices — initially empty

* At each iteration:

- Select the vertex u not in C such that D[u] is the smallest distance of all remaining
vertices (so the closest vertex from the vertices that are not yet in the “cloud”)

- Add u to C, the “cloud”

- Update D[v] for every vertex v adjacent to u and is outside of C, since it might be a
better way to get to v via u; this update is called edge relaxation:

if D[u] + w(u, v) < D(v) then
D[v] = D[u] + w(u, v)

RRRRRRRRRRRRR
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PQ C (“cloud”)
Dijkstra’s Algorithm - Example BOS

PVD
JFK

867 BWI

849 MIA
ORD

1846
740 144 187 DFW

621 SFO

802 LAX
1258

1391
1464 Dlv]
337 @ 1090
1235

« Start vertex is BWI, the only one with
946 length O

1121

2704

§ 8 8 8 8 o 8 8 8

9

2342
“TUBINGER" Shortest Paths | 12



PQ C (“cloud”)

Dijkstra’s Algorithm - Example BOS BWI 0
PVD
JFK
867 MIA
DFW

1846
sro

LAX

2704

g 8 8 8 8 8 8 8

o}

502 1258  Remove minimum length vertex, BWI,
o 184 from priority queue, and add it to cloud
7 164 * Vertices in the “cloud” are marked red
337 1090
1235
946

1121

%

RRRRRRRRRRRRR
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Dijkstra’s Algorithm - Example

2704

802

1391
1464
.

1121

2342
RRRRRRRRRRRRR
UNIVERSITAT
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144

o}

184

%

946

1090

1258

PQ C (“cloud”)

BOS o BWI 0
PVD

JFK 184

MIA 946

ORD 621

DFW o

SFO

LAX 00

Update the lengths of the paths from
BWI to all the vertices adjacent to BWI
which are not in the cloud
Edge relaxation for JFK, ORD and MIA
* 0 + 184 < oo, update JFK path
* 04946 < oo, update MIA path
* 0+ 621 < oo, update ORD path

Shortest Paths | 14



Dijkstra’s Algorithm - Example

2704

849
740 144 187
621
JFK
802 ~—
184 1258

1391
1464 BWI
337 @ 1090
1235 0

1121

2342

RRRRRRRRRRRRR

UNIVERSITAT
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PQ C (“cloud”)
BOS o BWI 0
PVD oo  JFK 184

MIA 946
ORD 621
DFW o
SFO
LAX 00

 Remove next vertex with minimum path
from PQ — JFK, and add it to cloud
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Dijkstra’s Algorithm - Example

1846
740

621
802

1391
1464
1235

1121

2342
RRRRRRRRRRRRR
UNIVERSITAT
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867

849

144

JFK

184

0

184
BWI

946

1090

1258

PQ C (“cloud”)
BOS 371 BWI 0
PVD 328 JFK 184
MIA 946
ORD 621
DFW 1575
SFO
LAX 00

Update the lengths of the paths from BWI to all
the vertices adjacent to JFK which are not in the

cloud
Edge relaxation for BOS, PVD, ORD, DFW and
MIA
« 184 + 187 < oo, update BOS path
184 4+ 144 < oo, update PVD path
184 + 1090 > 946, keep existing MIA path
« 184+ 740 > 621, keep existing ORD path
« 184 4+ 1391 < oo, update DFW path
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Dijkstra’s Algorithm - Example

849

740 144

621
802

1391
1464
1235

1121

2342
RRRRRRRRRRRRR
UNIVERSITAT
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JFK

—

184
9 o
0

184
BWI
946

PQ C (“cloud”)
BOS 371 BWI 0
MIA 946 JFK 184

ORD 621 PVD 328
DFW 1575

SFO

LAX 00

« Remove next vertex with minimum path from PQ
— PVD, and add it to cloud

1258

Shortest Paths | 17



Dijkstra’s Algorithm - Example

2704
849
621
JFK
802 —

184
1464

337 - 1090
1235

184
BWI

2342

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

1258

PQ C (“cloud”)

BOS 371 BWI 0
MIA 946 JFK 184
ORD 621 PVD 328
DFW 1575

SFO

LAX 00

« Update the lengths of the paths from BWI to all
the vertices adjacent to PVD which are not in the

cloud
« Edge relaxation for ORD
« 328 + 849 > 621, keep existing ORD path

Shortest Paths | 18



PQ C (“cloud”)
Dijkstra’s Algorithm - Example MIA 946 BWI 0
ORD 621 JFK 184
DFW 1575 PVD 328
SFO o BOS 371

LAX 00

2704

« Remove next vertex with minimum path from PQ
— BOS, and add it to cloud

802
184 1258

337 - 1090
1235
2342

RRRRRRRRRRRRR »
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PQ C (“cloud”)
Dijkstra’s Algorithm - Example MIA 946 BWI 0
ORD 621 JFK 184
DFW 1575 PVD 328
SFO 3075 BOS 371
LAX 00

2704

« Update the lengths of the paths from BWI to all
the vertices adjacent to BOS which are not in the

cloud
« Edge relaxation for ORD, SFO and MIA

802 184 1958 « 371+ 867 > 621, keep existing ORD path
184 e 371+ 2704 < oo, update SFO path
/o L . 371+ 1258 > 946, keep existing MIA path

BWI
337 - 1090
1235
2342

RRRRRRRRRRRRR »
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PQ C (“cloud”)

Dijkstra’s Algorithm - Example MIA 946 BWI 0
DFW 1575 JFK 184
SFO 3075 PVD 328
LAX o BOS 371
ORD 621

2704

* Remove next vertex with minimum path from PQ
— ORD, and add it to cloud

802 184

337 - 1090
1235

RRRRRRRRRRRRR
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Dijkstra’s Algorithm - Example

2704

802 184

1235 0

2342

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

1090

1258

PQ C (“cloud”)

MIA 946 BWI
DFW 1423 JFK
SFO 2467 PVD
LAX o BOS

ORD

0
184
328
371
621

« Update the lengths of the paths from BWI to all
the vertices adjacent to ORD which are not in the

cloud

» Edge relaxation for SFO and DFW
621+ 1846 < 3075, update SFO path
621 4+ 802 < 1575, update DFW path

Shortest Paths | 22



PQ C (“cloud”)
Dijkstra’s Algorithm - Example DFW 1423 BWI 0
SFO 2467 JFK 184
LAX o PVD 328

2704
BOS 371
ORD 621
1846 MIA 946

« Remove next vertex with minimum path from PQ
— MIA, and add it to cloud

802 184

1235 0

1121 MIA

1258

RRRRRRRRRRRRR
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Dijkstra’s Algorithm - Example

2704

740

184

1235

1121

2342

RRRRRRRRRRRRR

UNIVERSITAT
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0

184
1090

946

MIA

946

1258

PQ C (“cloud”)

DFW 1423 BWI
SFO 2467 JFK
LAX 3288 PVD
BOS
ORD
MIA

0
184
328
371
621
946

Update the lengths of the paths from BWI to all
the vertices adjacent to MIA which are not in the

cloud

Edge relaxation for LAX and DFW
* 946 + 2342 < oo, update LAX path
* 946 + 1121 > 1423, keep existing DFW path

Shortest Paths | 24



PQ C (“cloud”)

Dijkstra’s Algorithm - Example SFO 2467 BWI 0
LAX 3288 JFK 184

o PVD 328

BOS 371

ORD 621

(aae MIA 946
(Coro ) DFW 1423

740

621021 - Remove next vertex with minimum path from PQ

— DFW, and add it to cloud

802
184 1258

1391

1464 BVD
337 GFW 0 1090
1235

1121 MIA

2342

EEEEEEEEEE B
UNIVERSITAT ¢
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Dijkstra’s Algorithm - Example

2704

1846

621 621

740

802

184

1391
1464

337 <:E§;m/
1235

1423

1121

2342

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

1258

PQ C (“cloud”)

SFO 2467 BWI 0
LAX 2658 JFK 184
PVD 328
BOS 371
ORD 621
MIA 946
DFW 1423

« Update the lengths of the paths from BWI to all
the vertices adjacent to DFW which are not in the

cloud

» Edge relaxation for LAX and SFO
1423 + 1235 < 3288, update LAX path
* 1423 + 1464 > 2467, keep existing SFO

path

Shortest Paths | 26



Dijkstra’s Algorithm - Example

2704

740

184

337

0

184

1090

1423

1121

2342

RRRRRRRRRRRR aR
UNIVERSITAT %
TUBINGEN x

946

MIA

946

PQ C (“cloud”)
LAX 2658 BWI 0

JFK 184
PVD 328
BOS 371
ORD 621
MIA 946
DFW 1423
SFO 2467

Remove next vertex with minimum path from PQ
— SFO, and add it to cloud

1258

Shortest Paths | 27



PQ C (“cloud”)

Dijkstra’s Algorithm - Example LAX 2658 BWI 0
JFK 184
704 PVD 328
BOS 371
ORD 621
MIA 946
DFW 1423
740
SFO 2467
184 « Update the lengths of the paths from BWI to all
the vertices adjacent to SFO which are not in the
cloud
337 0 - Edge relaxation for LAX
1423 046 e 2467 + 337 > 2658, keep existing LAX path
1121 MIA
946
2342

EEEEEEEEEE B
UNIVERSITAT ¢
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PQ C (“cloud”)

Dijkstra’s Algorithm - Example BWI 0
JFK 184
704 PVD 328
BOS 371
ORD 621
MIA 946
DFW 1423
740
SFO 2467
LAX 2658
184 1258
184 - Remove next vertex with minimum path from PQ
BVD — LAX, and add it to cloud
337 DFW 0 1090 - No edges to relax — all vertices are in the “cloud”
N - PQ empty. STOP
@ 1423 946 ply. -
2658 1121 MIA
946

2342
RRRRRRRRRRRR aR
UNIVERSITAT %
TUBINGEN x
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Why Does Dijkstra’s Algorithm Require Nonnegative Weights?

* Dijkstra’s algorithm is based on the greedy
method, and adds vertices by increasing
distance

« If a node with a negative edge were to be
added late to the “cloud”, it would invalidate
the distances (shortest paths) for vertices
already in the cloud

- E.g. the true distance of C is 1, but it is
already added to the “cloud” with d(C) = 5

RRRRRRRRRRRRR
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Why Does Dijkstra’s Algorithm Work?

« At the moment when a vertex u is added to the “cloud’, its label D[u] stores the correct
length of a shortest path from s to u

- This is true only if there are no negative-weight edges in G, otherwise the greedy
method does not work correctly

» Thus, when the algorithm terminates it will have computed the shortest-path distance
from s for every vertex of G

RRRRRRRRRRRRR
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Why Does Dijkstra’s Algorithm Work?

* Proposition. In Dijkstra’s algorithm, whenever a vertex v is
added to the cloud, the label D[v] is equal to d(s, v), the length
of the shortest path from s to v.

« Justification. Suppose that D[v] > d(s, v) for some vertex v.
the first “wrong” vertex picked

- Let z be the first vertex added to the cloud C, such that c < i implc
\ /thatD 7] < D]y]
D|z] > d(s, 2)

- There must be a shorter path P from s to z (otherwise, mdu 2
d(s,z) = o0 = D[z]) p (D=dbn) )

X Dhl=d(s.y)
- Consider the moment when z is added to C:
* Let y be the first vertex of P (going from s to z) that is not in C
 Let x be the predecessor of y in the path P

» x is already in C, and D[x] = d(s, x), since we assumed that z
was the first vertex where D[z] > d(s, z)

RRRRRRRRRRRRR
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Why Does Dijkstra’s Algorithm Work?

 When x was added to the C, we relaxed the edge leading to
y: we tested (and possibly updated) D[y] such that D[y] <
D[x]+w(x,y) =d(s,x) + w(x,y)

« Since y is the next vertex on the shortest path from s to z,
Dly] =d(s,y)

« Now we are adding z to the path, so D[z] < D[y] (because
we are always adding to the vertex with min path that is not
yet in the “cloud” to ()

» A subpath of a shortest path is itself a shortest path, so y
must be on the shortest path from s to z, therefore d(s,y) +
d(y,z) =d(s,z)

 Also, d(y,z) = 0, since we cannot have negative weights

» Therefore D[z] < D[y] =d(s,y) <d(s,y) + d(y,z) = d(s, 2)

» Contradiction! We had supposed that z was the first vertex
added to C such that D[z] > d(s, 2)

RRRRRRRRRRRRR

UNIVERSITAT
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the first “wrong” vertex picked

C z picked implies
/ that D[z] < D[y

mc«s 2
S
p \ D] =d(s,x) y

x D =d(s,y)
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Running Time of Dijkstra’s Algorithm

Assume that the graph G has n vertices and m edges, and
is implemented using an adjacency list/adjacency map

This allows us to step through the incident edges of a
vertex in time proportional to their number

The for loop takes therefore 0(m) time

Priority queue operations
- Assume PQ implemented using a heap

- Each vertex is inserted once and removed once from
the priority queue, each insertion and removal takes
O(logn) time

- The key of a vertex in the PQ is modified at most

deg(v) times, where each key change takes O (logn)
time

- In this case, Dijkstra’s algorithm runs in 0((n + m) logn)
time — or 0(n?logn)

RRRRRRRRRRRRR

UNIVERSITAT
TUBINGEN

Algorithm ShortestPath(G,s):

Input: A weighted graph G with nonnegative edge weights, and a distinguished
vertex s of G.

Output: The length of a shortest path from s to v for each vertex v of G.
Initialize D[s] = 0 and D[v] = oo for each vertex v # s.
Let a priority queue Q contain all the vertices of G using the D labels as keys.
while Q is not empty do
{pull a new vertex u into the cloud}
u = value returned by Q.remove_min()
for each vertex v adjacent to u such that visin Q do
{perform the relaxation procedure on edge (u,v)}
if D[u] +w(u,v) < D[v] then
D[v] = D[u] +w(u,v)
Change to D[v] the key of vertex v in Q.
return the label D[v] of each vertex v

Shortest Paths | 34



Running Time of Dijkstra’s Algorithm — variant 2

« Assume that the graph G has n vertices and m edges, and is implemented using an adjacency
list/adjacency map

« Assume a priority queue implemented using an unsorted list

- This means that it takes 0(n) time to extract the minimum element
- But it allows for fast key updates in 0(1) time, provided the PQ supports location-aware entities

« In this case, Dijkstra’s algorithm runs in 0(n?) time

« The heap implementation is preferable when the number of edges in the graph is small — when
m < n?/logn

« The list implementation is preferable when the number of edges is large — when
m >n?/logn

RRRRRRRRRRRRR
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Dijkstra’s Algorithm — Python Implementation

23 while not pq.is_empty():

1 def shortest_path_lengths(g, src): _
2 """ Compute shortest-path distances from src to reachable vertices of g. 24 key, u = pqg.remove-min() )
3 25 cloud[u] = key # its correct d[u] value
4  Graph g can be undirected or directed, but must be weighted such that 26 del p(.]loca_tor.[u] _ 7 U is no longer in pq
5  e.element() returns a numeric weight for each edge e. 27 for e in g.mmd.ent_edges(u). ## outgoing edges (u,v)
6 28 v = e.opposite(u)
7 Return dictionary mapping each reachable vertex to its distance from src. 29 if v not in cloud: )
g mmm 30 # perform relaxation step on edge (u,v)
9 d={} # d[v] is upper bound fromstov -1 wet = e.element() )
10  cloud ={} # map reachable v to its d[v] value 32 if d[u] + wgt < d[v]: # better path to v
11 pq = AdaptableHeapPriorityQueue( )  # vertex v will have key d[v] 33 dlv] = d[u] + wet # update the distance
12 pqlocator = { } # map from vertex to its pq locator 34 pq.update(pglocator|v], d[v], v) # update the pq entry
35
13
36  return cloud # only includes reachable vertices

14  # for each vertex v of the graph, add an entry to the priority queue, with
15  # the source having distance 0 and all others having infinite distance
16  for v in g.vertices():

17 if v is src:
18 dlv] =0
19 else:
20 d[v] = float('inf') # syntax for positive infinity
21 pqlocator|v] = pg.add(d[v], v) # save locator for future updates
22
UNIVERSITAT &
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Adaptable Priority Queue

« Remember the methods supported by the priority queue  * The adaptable priority queue, needs to support

ADT, for a priority queue P: efficient an efficient update() operation

_ P.add(k, x) * Need mechanisms to find the node with a particular
inserts an item with key k and value x element without searching through the entire

- P.min() collection
returns, but does not remove the item with the » Use a locator as a parameter when invoking the
smallest key update method

- P.remove_min() token - P.update(loc, k, v)
removes and returns the item with smallest key ¢ replace key and value for the item identified by locator

4,c0 | |AD]| | (6.22) ] |15K3)| | (9.F.4) | | (7.Q5)| [(20B.6)] [(16X,7)

A A A A A A A A
é : é : : : é é

0 1 2 3 4 5 6 7
token

6.A0) | | (0F1) | | 622 | |a5kK3)| |a6xs)| | 7.Q5)| |(20.8,6)

A A A A A A A
o o o o

PQ after remove_min()

UNIVERSITAT
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Reconstructing the Shortest-Path Tree

* Dijkstra’s algorithm computes the length of the shortest path from the source vertex s to
any other reachable vertex v

* It does not provide the actual shortest path — in terms of vertices and edges

* The collection of all the shortest paths from a source vertex s can be compactly
represented by a shortest-path tree

* It can be constructed using the d[v] values obtained during Dijkstra’s algorithm

* |ldea: like with the DFS and BFS trees, map each vertex v # s to a parent u such that u is
the vertex immediately before v on a shortest path from s to v

* If u is the vertex just before v on the shortest path from s to v, then d[u] + w(u,v) = d[v]

UNIVERSITAT
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Reconstructing the Shortest-Path Tree (cont’d)

| def shortest_path_tree(g, s, d):

2 """ Reconstruct shortest-path tree rooted at vertex s, given distance map d.
3

4 Return tree as a map from each reachable vertex v (other than s) to the

5  edge e=(u,v) that is used to reach v from its parent u in the tree.

6 v

7 tree={}

g forvind:

9 if vis not s:
10 for e in g.incident_edges(v, False): # consider INCOMING edges
11 u = e.opposite(v)
12 wgt = e.element()
13 if d[v] == d[u] + wgt:
14 tree[v] = e # edge e is used to reach v

15 return tree
» Reconstruct the tree by testing all the incoming edges for each vertex v

 If d[v] = d[u] + weight, then save the edge e as being the edge used to reach v from its
parent u

* Running time is O(n + m)

RRRRRRRRRRRR
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Single-Source Shortest Path Problem
in a DAG
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Single-Source Shortest Path Problem in a DAG

» The single-source shortest path problem can be solved more efficiently if we know that
we are dealing with a directed acyclic graph

« Algorithm based on topological order, simpler and faster than Dijkstra’s algorithm
« It will work even if negative-weight edges are part of the DAG
* |dea:

- Initialize D[s] = 0, D[v] = oo for every vertex in G
- Relax the edges one by one, taking the vertices in topological order
* Running time: 0(n + m)

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example
@ 10 15 @
13 - 25

7
@ ©
3 74 28 116
& —® = ©

D|[v]

g8 8 8 8 8 8 8 8

O>IITIG)GUJT|H

T @ M m OO W >

C (“cloud”)

EEEEEEEEEEEE
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Single-Source Shortest Path Problem in a DAG - Example

RO C

- topo [
10 15

5 G, ®),
D 13 25
G
E
H 3 74 28 146
A & @ ©
C 14 20

EEEEEEEEEEE
UNIVERSITAT
TUBINGEN

D[v] C (“cloud”)
F 0

§ 8 © 8 8 8 8 8

T @ M m OO m >

Start vertex is F, the first vertex in the
topological sort

Remove F from the topological sort, and
add it to cloud

Vertices in the “cloud” are marked red
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Single-Source Shortest Path Problem in a DAG - Example

T O o e
10 15
2 G, 0, ALe B0
D ) - B 10
G 45 67 C 00
i (W © 0w
H -3 74 28 116 E 45
A & —-®—~© L
C 14 20 G oo
H 13

» Update the lengths of the paths from F
to all the vertices adjacent to F
» Edge relaxation for B, H and E
* 0410 < oo, update B path
* 0+ 13 < oo, update H path
* 0445 < oo, update E path

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

m 0 10 D[v] C (“cloud”)
10 —
> —D ALe F
G ) - B 10 B 10
E 45 67 C 00
) Q) © 0w
A -3 74 28 116 E 45
50 F 0
C & —® = ©
14 20 G
H 13

» Remove next vertex from topological
sort - B, and add it to cloud

RRRRRRRRRRRRR »
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Single-Source Shortest Path Problem in a DAG - Example

m 0 10 D[v] C (“cloud”)
10 = 15

> © Ae PO
G ) - B 10 B 10

E 45 67 C 00

H ® © S

A 3 74 28 116 E 45

C & —@® = © .

14 20 G o)

H 13

» Update the lengths of the paths from B
to all the vertices adjacent to B
» Edge relaxation for D
e 10+ 15 < oo, update D path

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

m 0 10 25 D[v] C (“cloud”)
= ) - B 10 B 10
H 45 67 C o0 D 25
A ® © o
C -3 74 28 116 E 45
@ @ 50 @ F 0
14 20 G 0
H 13

» Remove next vertex from topological
sort - D, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

m 0 10 25 D([v] C (“cloud”)
£ ) - B 10 B 10
H 45 67 C o0 D 25
A ® © o
C -3 74 28 116 E 45
@ @ 50 @ F 0
14 20 G 50
H 13

» Update the lengths of the paths from D
to all the vertices adjacent to D
« Edge relaxation for G and H
25+ 25 < oo, update G path
« 25467 > 13, keep existing H path

RRRRRRRRRRRRR

CTUBINGEN Shortest Paths | 48



Single-Source Shortest Path Problem in a DAG - Example

m 0 10 % D[v] C (“cloud”)
10 = 15 -
B 10 B 10
H 13 25 =
A 45 67 C 00 D 25
- @ G D 25 G 50
-3 74 28 116 E 45
S0 F 0
& —-® +©
14 20 G 50
H 13

» Remove next vertex from topological
sort - G, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

m 0 10 25 D[v] C (“cloud”)
10 - 15 -
- ®—>® (D A 78 F 0
B 10 B 10
H 13 25 =
A 45 67 C 66 D 25
c @ G D 25 G 50
-3 74 28 116 E 45
50 F 0
& @+ ©
14 20 G 50
H 13

» Update the lengths of the paths from G
to all the vertices adjacent to G
» Edge relaxation for E, Aand C
« 504 74 > 45, keep existing E path
* 50+ 28 < oo, update A path
* 50+ 16 < oo, update C path
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Single-Source Shortest Path Problem in a DAG - Example

| topo R = = —
10 = -
A A - ~ B 10 B 10
c , 67 C 6 D 25
@ G D 25 G 50
-3 74 28 |16 E 45 E 45
45 | %
50 F 0
@ ©
14 20 G 50
H 13

» Remove next vertex from topological
sort - E, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

| topo R = = EET—
10 = -
A A - ~ B 10 B 10
c , 67 C 6 D 25
@ G D 25 G 50
-3 74 28 |16 E 45 E 45
45 | %
50 F 0
@ ©
14 20 G 50
H 13

» Update the lengths of the paths from E
to all the vertices adjacent to E
« Edge relaxation for H and A
45— 3 > 13, keep existing H path
45+ 14 < 78, update A path

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

B - = 2 ol
10 = =
i F B ) ———(D A 59 F 0
B 10 B 10
C 1 13 25 =0
A5 67 C 66 D 25
G D 25 G 50
-3 74 28 |16 E 45 E 45
45 |t
50 F 0 H 13
e @) ©
14 20 G 50
H 13

» Remove next vertex from topological
sort - H, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

B - = 2 ol
10 = =
i F B ) ———(D A 59 F 0
B 10 B 10
C 1 13 25 =0
A5 67 C 63 D 25
G D 25 G 50
-3 74 28 |16 E 45 E 45
45 |t
50 F 0 H 13
e @) ©
14 20 G 50
H 13

» Update the lengths of the paths from H
to all the vertices adjacent to H
« Edge relaxation for C
13 4+ 50 < 66, update C path

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

- topo L - = B
10 — 15 =

C F B - D A 59 F 0
1 N B 10 B 10

1 = 67 %0 C 63 D 25

G D 25 G 50

-3 74 28 |16 E 45 E 45

= 50 F 0 H 13

@ ©
14 20 G 50 A 59
59
H 13

» Remove next vertex from topological
sort - A, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

- topo 2 = B
10 — 15 =
F B - D A 59 F 0
| N B 10 B 10
1 = 67 %0 C 63 D 25
G D 25 G 50
53 o< 8 |6 E 45 E 45
= 50 F 0 H 13
E A
14 20 G 50 A 59
59 63
H 13 C 63

» Remove next vertex from topological
sort - C, and add it to cloud

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem in a DAG - Example

- topo 2 = B
10 — 15 =
F B - D A 59 F 0
| N B 10 B 10
1 = 67 %0 C 63 D 25
G D 25 G 50
53 o< 8 |6 E 45 E 45
= 50 F 0 H 13
E A
14 20 G 50 A 59
59 63
H 13 C 63

« C has no outgoing edges, so no edges
to relax
» Topo empty, STOP.

RRRRRRRRRRRRR
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Single-Source Shortest Path Problem
in a Directed Graph without negative cycles
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Single-Source Shortest Path Problem in a Directed Graph without
negative cycles

* The single-source shortest path problem can also be solved more generally in a digraph
G with n vertices and m edges

- Even if some edges have negative weights

- Even if there are cycles

- The only condition is that the graph has no negative cycles
* The Bellman-Ford algorithm

- Initialize D[s] = 0, D[v] = oo for every vertex in G
- Make n passes over the edges

» At each pass, relax all the edges
* Running time O0(n - m)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

M m OO0 W >
8 8 8 8 8 8

_2 @5

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

m m OO ©m >

8§ 8 8 @ 8 8

2 ° J 5
@ Start from vertex C. Initially, the distance

to C is 0, all the other distances are .

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

M m OO0 W >
8 8 8 © 8 8§

2 ° J 5
@ Do the first pass, relax all edges in the

given order.

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

m m OO ©m >

8§ 8 8 @ 8 8

@ (A,B) o + 3 > o0, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

m m OO ©m >

8§ 8 8 @ 8 8

@ (A,D) © + 7 > o, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

m m OO ©m >

8§ 8 8 @ 8 8

@ (A,F) © + 1 > o, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

2 ° J 5
@ (C,A) 0 — 2 < oo, update D[A]
v

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

2 ° J 5
@ (C,D) 0 + 8 < oo, update D[D]
v

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

2 ° J 5
@ (C,F) 0 + 4 < oo, update D[F]
v

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

2 ° J 5
@ (D,B) 8 — 2 < o, update D[B]
v

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

A -2

B 6

@ cC o

o 4 D 8
= E 00

F 4

@ (E,A) o + 9 > oo, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
UNIVERSITAT
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Bellman-Ford Algorithm - Example

6
0
38
9
4

2 ¥ ? 5
@ (F.E) 4 +5 < oo, update D[E]

First pass ended, distances to 5 vertices
updated. Start second pass.

\

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

1
0
8
9
4

2 ° J 5
@ (A,B) =2 + 3 < 6, update D[B]
\

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Example

1
0
5
9
4

2 ° J 5
@ (A,D) —2 + 7 < 8, update D[D]
\

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

2 ° J 5
@ (AJF) =2 + 1 < 4, update D[F]
v

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

A =2

B 1

@ cC 0

o 4 D 5
=2 E 9
F -1

@ (C,A) 0 — 2 = -2, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 9
F -1

2 ° J 5
@ (C,D) 0 + 8 > 5, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A -2

B 1

© ¢

5 4 D 5
-2 E 9

F -1

-2 3 9 5
@ (C,F)0+4 > —1, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR »
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 9
F -1

@ (D,B)5—2 > 1, nochange

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

A -2

B 1

© ¢

5 4 D 5
-2 E 9

F -1

-2 3 9 5
@ (E,A)9 +9 > —2, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

2 ¥ ? 5
@ (F.E)—1+5 <9, update D[E]

Second pass done, distances to 4
vertices updated. Start third pass.

\

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

RRRRRRRRRRRRR
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

@ (A,B) -2+ 3 =1, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A =2

B 1

© c o

o 4 D 5§

= E 4

@ ® ®
_23 95

@ (A,D) -2 + 7 = 5, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A -2

B 1

© ¢

. 4 D 5
-2 E 4

Foo -1

2 ° ? 5
@ (A,F) -2+ 1 = —1, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

@ (C,A) 0 — 2 = -2, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

2 ° J 5
@ (C,D) 0 + 8 > 5, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

@ (C,F)0 +4 > —1, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

2 ° J 5
@ (D,B)5—2 > 1, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A =2
B 1
@ cC 0
o 4 D 5
=2 E 4
F -1

@ (E,A)4 +9 > —2, no change

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)

EEEEEEEEEEE
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Bellman-Ford Algorithm - Example

A =2

B 1

@ cC 0

o 4 D 5
=2 E 4
F —1

2 ¥ ? 5
@ (F.E) =1+ 5 = 4, no change. Third pass

ended with no changes. Fourth, fifth and
sixth pass will also bring no changes.
STOP.‘

Edges (AB) (AD) (AF) (CA) (CD) (CF) (b,B) (EA) (FE)
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Bellman-Ford Algorithm - Note

» The algorithm can be improved by keeping track of the vertices that have changed — only
those vertices will be able to generate further changes, e.g. by using a queue
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Thank you.

EBERHARD KARLS
UNIVERSITAT
TUBINGEN




