
Dependency Parsing
Data structures and algorithms
for Computational Linguistics III

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2019–2020

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words

• The structure of the sentence is represented by asymmetric, binary relations
between syntactic units

• Each relation defines one of the words as the head and the other as dependent
• The arcs (relations) have labels (dependency types)
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 1 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric, binary relations
between syntactic units

• Each relation defines one of the words as the head and the other as dependent
• The arcs (relations) have labels (dependency types)
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 1 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric, binary relations
between syntactic units

• Each relation defines one of the words as the head and the other as dependent

• The arcs (relations) have labels (dependency types)
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 1 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric, binary relations
between syntactic units

• Each relation defines one of the words as the head and the other as dependent
• The arcs (relations) have labels (dependency types)

• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 1 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
a refresher

John saw Mary

subject object
root

• No constituents, units of syntactic structure are words
• The structure of the sentence is represented by asymmetric, binary relations
between syntactic units

• Each relation defines one of the words as the head and the other as dependent
• The arcs (relations) have labels (dependency types)
• Often an artificial root node is used for computational convenience

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 1 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency grammars
common assumptions, variations

• Single-headed: most dependency formalisms require a word to have a single
head

• Acyclic: most dependency formalism do not allow loops in the graph
• Connected: all nodes are reachable from the ‘root’ node
• Projective: no crossing dependencies

The above assumptions (except projectivity) are common in dependency
parsing.

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 2 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency parsing
an overview

• Dependency parsing has many similarities with context-free parsing (e.g., the
result is a tree)

• They also have some different properties (e.g., number of edges and depth of
trees are limited)

• The process involves discovering the relations between words in a sentence
– Determine the head of each word
– Determine the relation type

• Dependency parsing can be
– grammar-driven (hand crafted rules or constraints)
– data-driven (rules/model is learned from a treebank)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 3 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency parsing
common methods for data-driven parsers

There are two main approaches:
Graph-based search for the best tree structure, for example

• find minimum spanning tree (MST)
• adaptations of CF chart parser (e.g., CKY)

(in general, computationally more expensive)
Transition-based similar to shift-reduce parsing (used for programming language

parsing)
• Single pass over the sentence, determine an operation (shift or
reduce) at each step

• Linear time complexity
• We need an approximate method to determine the operation

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 4 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Shift-Reduce parsing
a refresher through an example

G
ra
m
m
ar

S → P | S+ P | S− P

P → Num | P ×Num | P / Num

Pa
rs
er

st
at
es
/a
ct
io
ns

Stack Input buffer Action

2+ 3× 4 shift
2 + 3× 4 reduce (P → Num)
P + 3× 4 reduce (S → P)
S + 3× 4 shift
S+ 3× 4 shift
S+ 3 × 4 reduce (P → Num)
S+ P × 4 shift
S+ P × 4 shift
S+ P × 4 reduce (P → P ×Num)
S+ P reduce (S → S+ P)
S accept

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 5 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition-based parsing
differences from shift-reduce parsing

• The shift-reduce parsers (for programming languages) are deterministic,
actions are determined by a table lookup

• Natural language sentences are ambiguous, hence a dependency parser’s
actions cannot be made deterministic

• Operations are (somewhat) different: instead of reduce (using
phrase-structure rules) we use arc operations connecting two nodes with a
label

• Further operations are often defined (e.g., to deal with non-projectivity)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 6 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing

• Use a stack and a buffer of unprocessed words
• Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on top of the stack
Right-Arc: mark current word as a dependent of the word on top of the stack

Shift: push the current word on to the stack
• Algorithm terminates when all words in the input are processed
• The transitions are not naturally deterministic, best transition is predicted
using a machine learning method

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 7 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

A typical transition system

(σ |

stack top
wi

stack

,
next word

wj | β

buffer

, A

arcs
)

Left-Arcr: (σ | wi,wj | β,A) ⇒ (σ ,wj | β,A ∪ {(wj, r,wi)})

• pop wi,
• add arc (wj, r,wi) to A (keep wj in the buffer)

Right-Arcr: (σ | wi,wj | β,A) ⇒ (σ ,wi | β,A ∪ {(wi, r,wj)})

• pop wi,
• add arc (wi, r,wj) to A,
• move wi to the buffer

Shift: (σ ,wj | β,A) ⇒ (σ | wj, β,A)

• push wj to the stack
• remove it from the buffer

(Kübler, McDonald, and Nivre 2009, p.23)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 8 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Left-Arc(nsubj)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj

obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Right-Arc(obj)

Note: we need Shift for NP attachment.Note: We need Shift for NP attachment.

root

nsubj

obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Left-Arc(case)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Right-Arc(obl)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Left-Arc(root)

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Shift

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: example

Root We saw her with binoculars

st
ac
k

bu
ffe

r

Note: we need Shift for NP attachment.

Note: We need Shift for NP attachment.

root

nsubj obj

obl

case

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 9 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Making transition decisions

• In classical shift-reduce parsing the actions are deterministic
• In transition-based dependency parsing, we need to choose among all
possible transitions

• The typical method is to train a (discriminative) classifier on features
extracted from gold-standard transition sequences

• Almost any machine learning method method is applicable. Common choices
include

– Memory-based learning
– Support vector machines
– (Deep) neural networks

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 10 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Features for transition-based parsing

• The features come from the parser configuration, for example
– The word at the top of the stack, (peeking towards the bottom of the stack is also

fine)
– The first/second word on the buffer
– Right/left dependents of the word on top of the stack/buffer

• For each possible ‘address’, we can make use of features like
– Word form, lemma, POS tag, morphological features, word embeddings
– Dependency relations – (wi, r,wj) triples

• Note that for some ‘address’–‘feature’ combinations may be missing

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 11 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

The training data
• We want features like,

– lemma[Stack] = duck
– POS[Stack] = NOUN
– ...

• But treebank gives us:

� �
1 Read read VERB VB Mood=Imp|VerbForm=Fin 0 root
2 on on ADV RB _ 1 advmod
3 to to PART TO _ 4 mark
4 learn learn VERB VB VerbForm=Inf 1 xcomp
5 the the DET DT Definite=Def 6 det
6 facts fact NOUN NNS Number=Plur 4 obj
7 . . PUNCT . _ 1 punct� �

• The treebank has the outcome of the parser, but none of our features.
Ç. Çöltekin, SfS / University of Tübingen WS 19–20 12 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

The training data

• The features for transition-based parsing have to be from parser configurations
• The data (treebanks) need to be preprocessed for obtaining the training data
• Construct a transition sequence by parsing the sentences, and using treebank
annotations (the set A) as an ‘oracle’

• Decide for
Left-Arcr if (β[0], r,σ[0]) ∈ A

Right-Arcr if (σ[0], r,β[0]) ∈ A

and all dependents of β[0] are attached
Shift otherwise

• There may be multiple sequences that yield the same dependency tree, the
above defines a ‘canonical’ transition sequence

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 13 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Non-projective parsing

• The transition-based parsing we defined so far works only for projective
dependencies

• One way to achieve (limited) non-projective parsing is to add special
operations:

– Swap operation that swaps tokens in swap and buffer
– Left-Arc and Right-Arc transitions to/from non-top words from the stack

• Another method is pseudo-projective parsing:
– preprocessing to ‘projectivize’ the trees before training

• The idea is to attach the dependents to a higher level head that preserves
projectivity, while marking it on the new dependency label

– post-processing for restoring the projectivity after parsing
• Re-introduce projectivity for the marked dependencies

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 14 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Pseudo-projective parsing

Non-projective tree: A hearing is scheduled on the issue today .

ROOT

VC

PUNC

SBJNMOD

PP
TMP

NP
NMOD

Pseudo-projective tree: A hearing is scheduled on the issue today .

ROOT

VC

VC:TMP

SJ:PP

PUNC

SBJNMOD
NP
NMOD

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 15 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Transition based parsing: summary/notes

• Linear time, greedy parsing
• Can be extended to non-projective dependencies
• One can use arbitrary features,
• We need some extra work for generating gold-standard transition sequences
from treebanks

• Early errors propagate, transition-based parsers make more mistakes on
long-distance dependencies

• The greedy algorithm can be extended to beam search for better accuracy
(still linear time complexity)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 16 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Classification
the use in dependency parsing

• In transition-based parsing, transition decisions come from a classifier
• At each step during parsing, we have features like

– form[Stack] = saw
– lemma[Stack] = see
– POS[Stack] = VERB

– form[Buff] = her
– lemma[Buff] = she
– POS[Buf] = PRON

• We need to make a transition decision such as
– Shift
– Right-Arc(obj)

– Right-Arc(obl)
– Left-Arc(acl)

• We can use any multi-class classifier, examples in the literature include
– SVMs
– Decision Trees

– Neural networks
– …

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 17 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Graph-based parsing: preliminaries

• Enumerate all possible dependency trees
• Pick the best scoring tree
• Features are based on limited parse history (like CFG parsing)
• Two well-known flavors:

– Maximum (weight) spanning tree (MST)
– Chart-parsing based methods

eisner1996; McDonald, Pereira, Ribarov, and Hajič 2005

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 18 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph
which is a tree and traverses all the nodes

• For fully-connected graphs, the number of spanning
trees are exponential in the size of the graph

• The problem is well studied
• There are efficient algorithms for enumerating and
finding the optimum spanning tree on weighted
graphs

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 19 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST parsing: preliminaries
Spanning tree of a graph

• Spanning tree of a connected graph is a sub-graph
which is a tree and traverses all the nodes

• For fully-connected graphs, the number of spanning
trees are exponential in the size of the graph

• The problem is well studied
• There are efficient algorithms for enumerating and
finding the optimum spanning tree on weighted
graphs

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 19 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST algorithm for dependency parsing

• For directed graphs, there is a polynomial time algorithm that finds the
minimum/maximum spanning tree (MST) of a fully connected graph
(Chu-Liu-Edmonds algorithm)

• The algorithm starts with a dense/fully connected graph
• Removes edges until the resulting graph is a tree

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 20 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

For each node select the incoming arc with highest weight

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 21 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Detect the cycles, contract them to a ‘single node’

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 21 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Pick the best arc into the combined node, break the cycle

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 21 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

MST example

I saw

her duck

Root

3

9

3

3

2

1

8

9

7

2

8

1

3 8

41

I saw

her duck

Root

11

9

3

3

11

1

8

9

7
10

8

10

3 16

13

1

Once all cycles are eliminated, the result is the MST

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 21 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Properties of the MST parser

• The MST parser is non-projective
• There is an algorithm with O(n2) time complexity (Tarjan 1977)

• The time complexity increases with typed dependencies (but still close to
quadratic)

• The weights/parameters are associated with edges (often called
‘arc-factored’)

• We can learn the arc weights directly from a treebank
• However, it is difficult to incorporate non-local features

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 22 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

CKY for dependency parsing

• The CKY algorithm can be adapted to projective dependency parsing
• For a naive implementation the complexity increases drastically O(n6)

– Any of the words within the span can be the head
– Inner loop has to consider all possible splits

• For projective parsing, the observation that the left and right dependents of a
head are independently generated reduces the complexity to O(n3)

(Eisner 1997)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 23 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Non-local features

• The graph-based dependency parsers use edge-based features
• This limits the use of more global features
• Some extensions for using ‘more’ global features are possible
• This often leads non-projective parsing to become intractable
• Another option is using beam search, and re-ranking based on
different/global features

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 24 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

External features

• For both type of parsers, one can obtain features that are based on
unsupervised methods such as

– clustering
– dense vector representations (embeddings)
– alignment/transfer from bilingual corpora/treebanks

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 25 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Errors from different parsers

• Different parsers make different errors
– Transition based parsers do well on local arcs, worse on long-distance arcs
– Graph based parsers tend to do better on long-distance dependencies

• Parser combination is a good way to combine the powers of different models.
Two common methods

– Majority voting: train parsers separately, use the weighted combination of their
results

– Stacking: use the output of a parser as features for another

(McDonald and Satta 2007; Sagae and Lavie 2006; Nivre and McDonald 2008)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 26 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation metrics for dependency parsers

• Like CF parsing, exact match is often too strict
• Attachment score is the ratio of words whose heads are identified correctly.

– Labeled attachment score (LAS) requires the dependency type to match
– Unlabeled attachment score (UAS) disregards the dependency type

• Precision/recall/F-measure often used for quantifying success on identifying a
particular dependency type

precision is the ratio of correctly identified dependencies (of a certain type)
recall is the ratio of dependencies in the gold standard that parser predicted correctly

f-measure is the harmonic mean of precision and recall
(

2×precision×recall
precision+recall

)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 27 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS

100%

LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS

50%

Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj

50%

Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj

100%

Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj

0% (assumed)

Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj

0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Evaluation example

I saw her duck

nsubj

obj

nmod

root
Gold standard

I saw her duck

nsubj

ccomp

nsubj

root
Parser output

UAS 100%
LAS 50%
Precisionnsubj 50%
Recallnsubj 100%
Precisionobj 0% (assumed)
Recallobj 0%

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 28 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Averaging evaluation scores

• Average scores can be
macro-averaged over sentences
micro-averaged over words

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score:

50% (20/40)

– sentence-based average attachment score:

66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 29 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Averaging evaluation scores

• Average scores can be
macro-averaged over sentences
micro-averaged over words

• Consider a two-sentence test set with
words correct

sentence 1 30 10
sentence 2 10 10

– word-based average attachment score: 50% (20/40)
– sentence-based average attachment score: 66% ((1 + 1/3)/2)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 29 / 30

Introduction Transition-based parsing Classification Graph based parsing Variations/improvements Evaluation

Dependency parsing: summary
• Dependency relations are often semantically easier to interpret
• It is also claimed that dependency parsers are more suitable for parsing
free-word-order languages

• Dependency relations are between words, no phrases or other abstract nodes
are postulated

• Two general methods:
transition based greedy search, non-local features, fast, less accurate
graph based exact search, local features, slower, accurate (within model

limitations)
• Combination of different methods often result in better performance
• Non-projective parsing is more difficult
• Most of the recent parsing research has focused on better machine learning
methods (mainly using neural networks)

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 30 / 30

References / additional reading material

• Kübler, McDonald, and Nivre (2009) is an accessible book on to dependency
parsing

• The new version of Jurafsky and Martin (2009) also includes a draft chapter
on dependency grammars and dependency parsing

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 A.1

http://web.stanford.edu/~jurafsky/slp3/13.pdf

References / additional reading material (cont.)

Eisner, Jason (1997). “Bilexical grammars and a cubic-time probabilistic parser”. In: Proceedings of the Fifth
International Conference on Parsing Technologies (IWPT).

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. isbn:
978-0-13-504196-3.

Kübler, Sandra, Ryan McDonald, and Joakim Nivre (2009). Dependency Parsing. Synthesis lectures on human
language technologies. Morgan & Claypool. isbn: 9781598295962.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič (2005). “Non-projective Dependency Parsing
Using Spanning Tree Algorithms”. In: Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing. HLT ’05. Vancouver, British Columbia, Canada: Association for
Computational Linguistics, pp. 523–530. doi: 10.3115/1220575.1220641. url:
http://dx.doi.org/10.3115/1220575.1220641.

McDonald, Ryan and Giorgio Satta (2007). “On the complexity of non-projective data-driven dependency
parsing”. In: Proceedings of the 10th International Conference on Parsing Technologies. Association for
Computational Linguistics, pp. 121–132.

Nivre, Joakim, Johan Hall, and Jens Nilsson (2004). “Memory-based dependency parsing”. In: Proceedings of the
8th Conference on Computational Natural Language Learning (CoNLL). Ed. by Hwee Tou Ng and Ellen Riloff,
pp. 49–56.

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 A.2

https://doi.org/10.3115/1220575.1220641
http://dx.doi.org/10.3115/1220575.1220641

References / additional reading material (cont.)

Nivre, Joakim and Ryan McDonald (June 2008). “Integrating Graph-Based and Transition-Based Dependency
Parsers”. In: Proceedings of ACL-08: HLT. Columbus, Ohio: Association for Computational Linguistics,
pp. 950–958. url: http://www.aclweb.org/anthology/P/P08/P08-1108.

Sagae, Kenji and Alon Lavie (June 2006). “Parser Combination by Reparsing”. In: Proceedings of the Human
Language Technology Conference of the NAACL, Companion Volume: Short Papers. New York City, USA: Association
for Computational Linguistics, pp. 129–132. url: http://www.aclweb.org/anthology/N/N06/N06-2033.

Tarjan, R. E. (1977). “Finding optimum branchings”. In: Networks 7.1, pp. 25–35. issn: 1097-0037. doi:
10.1002/net.3230070103.

Yamada, Hiroyasu and Yuji Matsumoto (2003). “Statistical dependency analysis with support vector machines”.
In: Proceedings of 8th international workshop on parsing technologies (IWPT). Ed. by Gertjan Van Noord,
pp. 195–206.

Ç. Çöltekin, SfS / University of Tübingen WS 19–20 A.3

http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/N/N06/N06-2033
https://doi.org/10.1002/net.3230070103

	Dependency Parsing
	Introduction
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency parsing
	Dependency parsing

	Transition-based parsing
	Shift-Reduce parsing
	Transition-based parsing
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	Features for transition-based parsing
	The training data
	The training data
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes

	Classification
	Classification

	Graph based parsing
	Graph-based parsing: preliminaries
	MST parsing: preliminaries
	MST parsing: preliminaries
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser
	CKY for dependency parsing
	Non-local features

	Variations/improvements
	External features
	Errors from different parsers

	Evaluation
	Evaluation metrics for dependency parsers
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Evaluation example
	Averaging evaluation scores
	Averaging evaluation scores
	Dependency parsing: summary

	Appendix
	References / additional reading material
	References / additional reading material
	References / additional reading material

